Delete MyModel.py
Browse files- MyModel.py +0 -101
MyModel.py
DELETED
@@ -1,101 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
from torch import nn
|
3 |
-
import torchaudio
|
4 |
-
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer, HubertModel, AutoProcessor
|
5 |
-
from .MyConfig import CustomModelConfig
|
6 |
-
from peft import LoraConfig, get_peft_model
|
7 |
-
|
8 |
-
class HubertXCNNEnoder(nn.Module):
|
9 |
-
def __init__(self, audio_enc_dim, llm_dim):
|
10 |
-
super().__init__()
|
11 |
-
self.encoder = HubertModel.from_pretrained('facebook/hubert-xlarge-ll60k')
|
12 |
-
for param in self.encoder.parameters():
|
13 |
-
param.requires_grad = False
|
14 |
-
|
15 |
-
self.cnn = nn.Sequential(
|
16 |
-
nn.ReLU(),
|
17 |
-
nn.Conv1d(audio_enc_dim, llm_dim // 2, kernel_size=5, stride=1, padding=0),
|
18 |
-
nn.ReLU(),
|
19 |
-
nn.Conv1d(llm_dim // 2, llm_dim, kernel_size=5, stride=2, padding=0),
|
20 |
-
nn.ReLU(),
|
21 |
-
nn.Conv1d(llm_dim, llm_dim, kernel_size=3, stride=1, padding=0),
|
22 |
-
)
|
23 |
-
|
24 |
-
def forward(self, x):
|
25 |
-
x = self.encoder(x).last_hidden_state
|
26 |
-
x = self.cnn(x.transpose(1, 2)).transpose(1, 2)
|
27 |
-
return x
|
28 |
-
|
29 |
-
class CustomModel(PreTrainedModel):
|
30 |
-
config_class = CustomModelConfig
|
31 |
-
|
32 |
-
def __init__(self, config):
|
33 |
-
super().__init__(config)
|
34 |
-
self.audio_processor = AutoProcessor.from_pretrained("facebook/hubert-large-ls960-ft")
|
35 |
-
self.audio_encoder = HubertXCNNEnoder(config.audio_enc_dim, config.llm_dim)
|
36 |
-
self.llm_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
37 |
-
self.llm_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
|
38 |
-
|
39 |
-
peft_config = LoraConfig(
|
40 |
-
r=4,
|
41 |
-
lora_alpha=8,
|
42 |
-
target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'],
|
43 |
-
lora_dropout=0.05,
|
44 |
-
task_type="CAUSAL_LM",
|
45 |
-
)
|
46 |
-
self.llm_model = get_peft_model(self.llm_model, peft_config)
|
47 |
-
|
48 |
-
def encode(self, mel, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids):
|
49 |
-
batch_size = mel.shape[0]
|
50 |
-
|
51 |
-
with torch.no_grad():
|
52 |
-
speech_embeds = self.audio_encoder(mel)
|
53 |
-
embedder = self.llm_model.model.model.embed_tokens
|
54 |
-
pre_prompt_embeds = embedder(pre_tokenized_ids)
|
55 |
-
post_prompt_embeds = embedder(post_tokenized_ids)
|
56 |
-
output_prompt_embeds = embedder(output_tokenized_ids)
|
57 |
-
|
58 |
-
combined_embeds = torch.cat([pre_prompt_embeds, speech_embeds, post_prompt_embeds, output_prompt_embeds], dim=1)
|
59 |
-
atts = torch.ones(combined_embeds.size()[:-1], dtype=torch.long).to(combined_embeds.device)
|
60 |
-
|
61 |
-
input_token_length = pre_tokenized_ids.shape[1] + speech_embeds.shape[1] + post_tokenized_ids.shape[1]
|
62 |
-
label_ids = torch.cat([
|
63 |
-
torch.ones([batch_size, input_token_length], device=combined_embeds.device) * -100,
|
64 |
-
output_tokenized_ids
|
65 |
-
], 1).to(combined_embeds.device).to(torch.int64)
|
66 |
-
return combined_embeds, atts, label_ids
|
67 |
-
|
68 |
-
def forward(self, wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids, attention_mask=None):
|
69 |
-
combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids)
|
70 |
-
outputs = self.llm_model(inputs_embeds=combined_embeds, attention_mask=attention_mask)
|
71 |
-
return outputs
|
72 |
-
|
73 |
-
def generate_meta(self, audio_path, instruction="Give me the following information about the audio [Transcript]", max_new_tokens=2000):
|
74 |
-
pre_speech_prompt = f'''Instruction:
|
75 |
-
{instruction}
|
76 |
-
|
77 |
-
Input:
|
78 |
-
<speech>'''
|
79 |
-
post_speech_prompt = f'''</speech>
|
80 |
-
|
81 |
-
Output:'''
|
82 |
-
output_prompt = '\n<s>'
|
83 |
-
|
84 |
-
with torch.no_grad():
|
85 |
-
wav_tensor, sr = torchaudio.load(audio_path)
|
86 |
-
wav_tensor = self.audio_processor(wav_tensor.squeeze(), return_tensors="pt", sampling_rate=16000).input_values
|
87 |
-
|
88 |
-
pre_tokenized_ids = self.llm_tokenizer(pre_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
|
89 |
-
post_tokenized_ids = self.llm_tokenizer(post_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
|
90 |
-
output_tokenized_ids = self.llm_tokenizer(output_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
|
91 |
-
|
92 |
-
combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids)
|
93 |
-
|
94 |
-
out = self.llm_model.generate(
|
95 |
-
inputs_embeds=combined_embeds,
|
96 |
-
max_new_tokens=max_new_tokens,
|
97 |
-
).cpu().tolist()[0]
|
98 |
-
|
99 |
-
output_text = self.llm_tokenizer.decode(out, skip_special_tokens=False)
|
100 |
-
return output_text
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|