Delete Test-mgc-Copy1.ipynb
Browse files- Test-mgc-Copy1.ipynb +0 -1177
Test-mgc-Copy1.ipynb
DELETED
@@ -1,1177 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 2,
|
6 |
-
"id": "addd199c-097c-419d-a0f2-c3d73efb8d5d",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [
|
9 |
-
{
|
10 |
-
"name": "stdout",
|
11 |
-
"output_type": "stream",
|
12 |
-
"text": [
|
13 |
-
"\n",
|
14 |
-
"===================================BUG REPORT===================================\n",
|
15 |
-
"Welcome to bitsandbytes. For bug reports, please run\n",
|
16 |
-
"\n",
|
17 |
-
"python -m bitsandbytes\n",
|
18 |
-
"\n",
|
19 |
-
" and submit this information together with your error trace to: https://github.com/TimDettmers/bitsandbytes/issues\n",
|
20 |
-
"================================================================================\n",
|
21 |
-
"bin /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so\n",
|
22 |
-
"CUDA_SETUP: WARNING! libcudart.so not found in any environmental path. Searching in backup paths...\n",
|
23 |
-
"CUDA SETUP: CUDA runtime path found: /usr/local/cuda/lib64/libcudart.so\n",
|
24 |
-
"CUDA SETUP: Highest compute capability among GPUs detected: 8.6\n",
|
25 |
-
"CUDA SETUP: Detected CUDA version 121\n",
|
26 |
-
"CUDA SETUP: Loading binary /opt/conda/lib/python3.10/site-packages/bitsandbytes/libbitsandbytes_cuda121.so...\n"
|
27 |
-
]
|
28 |
-
},
|
29 |
-
{
|
30 |
-
"name": "stderr",
|
31 |
-
"output_type": "stream",
|
32 |
-
"text": [
|
33 |
-
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('/usr/local/nvidia/lib64'), PosixPath('/usr/local/nvidia/lib')}\n",
|
34 |
-
" warn(msg)\n",
|
35 |
-
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: /usr/local/nvidia/lib:/usr/local/nvidia/lib64 did not contain ['libcudart.so', 'libcudart.so.11.0', 'libcudart.so.12.0'] as expected! Searching further paths...\n",
|
36 |
-
" warn(msg)\n",
|
37 |
-
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQCcuY6EsmJRfLsI1l1rpDWVRhwkL7A9nzITTDbCFOX0wzshP65l/Sa54NrS1pX2uM6YiB7OvgGUm7uUKf9OBCcpd2ohFJiOkTznhDHk+D7IkFZf/VTRIHy/JZoAtzN/qBQKMOygFam1XzTMDnkehMkKvR23BgH72hzGUfYPIsq+OlStYVMhE1bncYSnC4SRucbdT5BeIsival514xsbAhCjjwPd8UHfw1cxaDq4edWjbhN8wkDU+V8i/jS/wWTZIt7pIZiAREEl/YC+Sc4FCSnb4c3p+adl5pqXrEsKygi+UmBtC1poLSXTgZOc/0kerx4jv/HB8NiH4kLsg4S2HjdFFQIB0WSV0i4KDVRE9cv18gQ7kbEv0t9Uwg4xdoMntCNS6aFDm51ufhshwQylzfSwX71Ka3mPdftfnVk81wKpIxN784FEcb7IE7HcNyomnP9N382Fg8j6pILwsKK6w4oOg8Cn2C66cySA6CNTFpK1kYBwsqdU3X8WBQUIZZNVCn4x/qRWYxrKHmdlUW8oCf9AT32eydDQWp1y0AlycA4wfbDQ8g4dtu9Rf+tBrYTztdCt5PbGy4SbwfynWysc/PuhcyaLNtuRYt3LeiCKhKJFNFST1BqjACrjkQ9kMrPSB/7j3JX9O2ncDHDQgCQIQon9BETVQZJ49EqMrusQ3/K39w== shanjay@LAPTOP-Q1PG3AE7')}\n",
|
38 |
-
" warn(msg)\n",
|
39 |
-
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('//g.notebooksg.jarvislabs.net'), PosixPath('https')}\n",
|
40 |
-
" warn(msg)\n",
|
41 |
-
"/opt/conda/lib/python3.10/site-packages/bitsandbytes/cuda_setup/main.py:149: UserWarning: WARNING: The following directories listed in your path were found to be non-existent: {PosixPath('module'), PosixPath('//matplotlib_inline.backend_inline')}\n",
|
42 |
-
" warn(msg)\n"
|
43 |
-
]
|
44 |
-
}
|
45 |
-
],
|
46 |
-
"source": [
|
47 |
-
"import json\n",
|
48 |
-
"import os\n",
|
49 |
-
"from pprint import pprint\n",
|
50 |
-
"\n",
|
51 |
-
"import bitsandbytes as bnb\n",
|
52 |
-
"import pandas as pd\n",
|
53 |
-
"import torch\n",
|
54 |
-
"import torch.nn as nn\n",
|
55 |
-
"\n",
|
56 |
-
"import transformers\n",
|
57 |
-
"from datasets import load_dataset\n",
|
58 |
-
"from huggingface_hub import notebook_login\n",
|
59 |
-
"from peft import (\n",
|
60 |
-
" LoraConfig,\n",
|
61 |
-
" PeftConfig,\n",
|
62 |
-
" PeftModel,\n",
|
63 |
-
" get_peft_model,\n",
|
64 |
-
" prepare_model_for_kbit_training,\n",
|
65 |
-
")\n",
|
66 |
-
"from transformers import (\n",
|
67 |
-
" AutoConfig,\n",
|
68 |
-
" AutoModelForCausalLM,\n",
|
69 |
-
" AutoTokenizer,\n",
|
70 |
-
" BitsAndBytesConfig,\n",
|
71 |
-
")\n",
|
72 |
-
"import warnings\n",
|
73 |
-
"warnings.filterwarnings(\"ignore\")\n",
|
74 |
-
"\n",
|
75 |
-
"os.environ[\"CUDA_VISIBLE_DEVICES\"] = \"0\""
|
76 |
-
]
|
77 |
-
},
|
78 |
-
{
|
79 |
-
"cell_type": "code",
|
80 |
-
"execution_count": 3,
|
81 |
-
"id": "acfb1578-a66f-44f0-8df9-1c6bcf7530ea",
|
82 |
-
"metadata": {},
|
83 |
-
"outputs": [
|
84 |
-
{
|
85 |
-
"data": {
|
86 |
-
"application/vnd.jupyter.widget-view+json": {
|
87 |
-
"model_id": "3edf6ee054e9464eb510d3aff9d1dc5f",
|
88 |
-
"version_major": 2,
|
89 |
-
"version_minor": 0
|
90 |
-
},
|
91 |
-
"text/plain": [
|
92 |
-
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
93 |
-
]
|
94 |
-
},
|
95 |
-
"metadata": {},
|
96 |
-
"output_type": "display_data"
|
97 |
-
}
|
98 |
-
],
|
99 |
-
"source": [
|
100 |
-
"notebook_login()"
|
101 |
-
]
|
102 |
-
},
|
103 |
-
{
|
104 |
-
"cell_type": "code",
|
105 |
-
"execution_count": 4,
|
106 |
-
"id": "d2f13cac-1536-4da0-8ff7-0a0454fd0b4a",
|
107 |
-
"metadata": {},
|
108 |
-
"outputs": [],
|
109 |
-
"source": [
|
110 |
-
"with open(\"ds1000-test-cleaned.json\") as json_file:\n",
|
111 |
-
" data = json.load(json_file)"
|
112 |
-
]
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"cell_type": "code",
|
116 |
-
"execution_count": 5,
|
117 |
-
"id": "6706e68b-d525-4392-ab2c-1dff356da52d",
|
118 |
-
"metadata": {},
|
119 |
-
"outputs": [
|
120 |
-
{
|
121 |
-
"name": "stdout",
|
122 |
-
"output_type": "stream",
|
123 |
-
"text": [
|
124 |
-
"{'answer': 'import pandas as pd\\n'\n",
|
125 |
-
" '\\n'\n",
|
126 |
-
" '\\n'\n",
|
127 |
-
" 'index = range(14)\\n'\n",
|
128 |
-
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
129 |
-
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
130 |
-
" 'def g(df):\\n'\n",
|
131 |
-
" \" l = df['A'].replace(to_replace=0, method='ffill')\\n\"\n",
|
132 |
-
" \" r = df['A'].replace(to_replace=0, method='bfill')\\n\"\n",
|
133 |
-
" ' for i in range(len(df)):\\n'\n",
|
134 |
-
" \" df['A'].iloc[i] = max(l[i], r[i])\\n\"\n",
|
135 |
-
" ' return df\\n'\n",
|
136 |
-
" '\\n'\n",
|
137 |
-
" 'df = g(df.copy())\\n'\n",
|
138 |
-
" 'result = df\\n'\n",
|
139 |
-
" 'print(result)',\n",
|
140 |
-
" 'question': 'Problem:\\n'\n",
|
141 |
-
" 'I have the following dataframe:\\n'\n",
|
142 |
-
" 'index = range(14)\\n'\n",
|
143 |
-
" 'data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\\n'\n",
|
144 |
-
" \"df = pd.DataFrame(data=data, index=index, columns = ['A'])\\n\"\n",
|
145 |
-
" '\\n'\n",
|
146 |
-
" '\\n'\n",
|
147 |
-
" 'How can I fill the zeros with the maximun between previous and '\n",
|
148 |
-
" 'posterior non-zero value using pandas? Is there a fillna that is '\n",
|
149 |
-
" 'not just for \"NaN\"?. \\n'\n",
|
150 |
-
" 'The output should look like:\\n'\n",
|
151 |
-
" ' A\\n'\n",
|
152 |
-
" '0 1\\n'\n",
|
153 |
-
" '1 2\\n'\n",
|
154 |
-
" '2 2\\n'\n",
|
155 |
-
" '3 2\\n'\n",
|
156 |
-
" '4 4\\n'\n",
|
157 |
-
" '5 4\\n'\n",
|
158 |
-
" '6 6\\n'\n",
|
159 |
-
" '7 8\\n'\n",
|
160 |
-
" '8 8\\n'\n",
|
161 |
-
" '9 8\\n'\n",
|
162 |
-
" '10 8\\n'\n",
|
163 |
-
" '11 8\\n'\n",
|
164 |
-
" '12 2\\n'\n",
|
165 |
-
" '13 1'}\n"
|
166 |
-
]
|
167 |
-
}
|
168 |
-
],
|
169 |
-
"source": [
|
170 |
-
"pprint(data[0])"
|
171 |
-
]
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"cell_type": "code",
|
175 |
-
"execution_count": 6,
|
176 |
-
"id": "9cc4983a-9a3f-485f-983f-efe2f10ce516",
|
177 |
-
"metadata": {},
|
178 |
-
"outputs": [],
|
179 |
-
"source": [
|
180 |
-
"with open(\"ds1000-test-cleaned.json\", \"w\") as f:\n",
|
181 |
-
" json.dump(data, f)"
|
182 |
-
]
|
183 |
-
},
|
184 |
-
{
|
185 |
-
"cell_type": "code",
|
186 |
-
"execution_count": 7,
|
187 |
-
"id": "f45c3674-4eed-4ca5-8343-2184ff1e4da1",
|
188 |
-
"metadata": {},
|
189 |
-
"outputs": [
|
190 |
-
{
|
191 |
-
"data": {
|
192 |
-
"text/html": [
|
193 |
-
"<div>\n",
|
194 |
-
"<style scoped>\n",
|
195 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
196 |
-
" vertical-align: middle;\n",
|
197 |
-
" }\n",
|
198 |
-
"\n",
|
199 |
-
" .dataframe tbody tr th {\n",
|
200 |
-
" vertical-align: top;\n",
|
201 |
-
" }\n",
|
202 |
-
"\n",
|
203 |
-
" .dataframe thead th {\n",
|
204 |
-
" text-align: right;\n",
|
205 |
-
" }\n",
|
206 |
-
"</style>\n",
|
207 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
208 |
-
" <thead>\n",
|
209 |
-
" <tr style=\"text-align: right;\">\n",
|
210 |
-
" <th></th>\n",
|
211 |
-
" <th>question</th>\n",
|
212 |
-
" <th>answer</th>\n",
|
213 |
-
" </tr>\n",
|
214 |
-
" </thead>\n",
|
215 |
-
" <tbody>\n",
|
216 |
-
" <tr>\n",
|
217 |
-
" <th>0</th>\n",
|
218 |
-
" <td>Problem:\\nI have the following dataframe:\\nind...</td>\n",
|
219 |
-
" <td>import pandas as pd\\n\\n\\nindex = range(14)\\nda...</td>\n",
|
220 |
-
" </tr>\n",
|
221 |
-
" <tr>\n",
|
222 |
-
" <th>1</th>\n",
|
223 |
-
" <td>Problem:\\ni got an issue over ranking of date ...</td>\n",
|
224 |
-
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I...</td>\n",
|
225 |
-
" </tr>\n",
|
226 |
-
" <tr>\n",
|
227 |
-
" <th>2</th>\n",
|
228 |
-
" <td>Problem:\\nI have a DataFrame like :\\n 0 ...</td>\n",
|
229 |
-
" <td>import pandas as pd\\nimport numpy as np\\n\\ndf ...</td>\n",
|
230 |
-
" </tr>\n",
|
231 |
-
" <tr>\n",
|
232 |
-
" <th>3</th>\n",
|
233 |
-
" <td>Problem:\\nI have this Pandas dataframe (df):\\n...</td>\n",
|
234 |
-
" <td>import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A...</td>\n",
|
235 |
-
" </tr>\n",
|
236 |
-
" <tr>\n",
|
237 |
-
" <th>4</th>\n",
|
238 |
-
" <td>Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic...</td>\n",
|
239 |
-
" <td>import pandas as pd\\n\\ndf = pd.DataFrame.from_...</td>\n",
|
240 |
-
" </tr>\n",
|
241 |
-
" </tbody>\n",
|
242 |
-
"</table>\n",
|
243 |
-
"</div>"
|
244 |
-
],
|
245 |
-
"text/plain": [
|
246 |
-
" question \\\n",
|
247 |
-
"0 Problem:\\nI have the following dataframe:\\nind... \n",
|
248 |
-
"1 Problem:\\ni got an issue over ranking of date ... \n",
|
249 |
-
"2 Problem:\\nI have a DataFrame like :\\n 0 ... \n",
|
250 |
-
"3 Problem:\\nI have this Pandas dataframe (df):\\n... \n",
|
251 |
-
"4 Problem:\\nI have\\n\\ndf = pd.DataFrame.from_dic... \n",
|
252 |
-
"\n",
|
253 |
-
" answer \n",
|
254 |
-
"0 import pandas as pd\\n\\n\\nindex = range(14)\\nda... \n",
|
255 |
-
"1 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'I... \n",
|
256 |
-
"2 import pandas as pd\\nimport numpy as np\\n\\ndf ... \n",
|
257 |
-
"3 import pandas as pd\\n\\n\\ndf = pd.DataFrame({'A... \n",
|
258 |
-
"4 import pandas as pd\\n\\ndf = pd.DataFrame.from_... "
|
259 |
-
]
|
260 |
-
},
|
261 |
-
"execution_count": 7,
|
262 |
-
"metadata": {},
|
263 |
-
"output_type": "execute_result"
|
264 |
-
}
|
265 |
-
],
|
266 |
-
"source": [
|
267 |
-
"pd.DataFrame(data).head()"
|
268 |
-
]
|
269 |
-
},
|
270 |
-
{
|
271 |
-
"cell_type": "code",
|
272 |
-
"execution_count": 8,
|
273 |
-
"id": "6fbdd3ad-062f-4744-bb8e-1c19950adfd5",
|
274 |
-
"metadata": {},
|
275 |
-
"outputs": [],
|
276 |
-
"source": [
|
277 |
-
"bnb_config = BitsAndBytesConfig(\n",
|
278 |
-
" load_in_4bit=True,\n",
|
279 |
-
" bnb_4bit_use_double_quant=True,\n",
|
280 |
-
" bnb_4bit_quant_type=\"nf4\",\n",
|
281 |
-
" bnb_4bit_compute_dtype=torch.bfloat16,\n",
|
282 |
-
")"
|
283 |
-
]
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"cell_type": "code",
|
287 |
-
"execution_count": 9,
|
288 |
-
"id": "2b5ae38c-b0d2-4b9a-acde-3370130ca6e7",
|
289 |
-
"metadata": {},
|
290 |
-
"outputs": [
|
291 |
-
{
|
292 |
-
"data": {
|
293 |
-
"application/vnd.jupyter.widget-view+json": {
|
294 |
-
"model_id": "2be27a54d3e14399a41c46cd9c423399",
|
295 |
-
"version_major": 2,
|
296 |
-
"version_minor": 0
|
297 |
-
},
|
298 |
-
"text/plain": [
|
299 |
-
"Loading checkpoint shards: 0%| | 0/6 [00:00<?, ?it/s]"
|
300 |
-
]
|
301 |
-
},
|
302 |
-
"metadata": {},
|
303 |
-
"output_type": "display_data"
|
304 |
-
},
|
305 |
-
{
|
306 |
-
"name": "stderr",
|
307 |
-
"output_type": "stream",
|
308 |
-
"text": [
|
309 |
-
"Some weights of LlamaForCausalLM were not initialized from the model checkpoint at ise-uiuc/Magicoder-S-DS-6.7B and are newly initialized: ['model.layers.2.self_attn.rotary_emb.inv_freq', 'model.layers.6.self_attn.rotary_emb.inv_freq', 'model.layers.25.self_attn.rotary_emb.inv_freq', 'model.layers.15.self_attn.rotary_emb.inv_freq', 'model.layers.1.self_attn.rotary_emb.inv_freq', 'model.layers.7.self_attn.rotary_emb.inv_freq', 'model.layers.18.self_attn.rotary_emb.inv_freq', 'model.layers.17.self_attn.rotary_emb.inv_freq', 'model.layers.4.self_attn.rotary_emb.inv_freq', 'model.layers.30.self_attn.rotary_emb.inv_freq', 'model.layers.12.self_attn.rotary_emb.inv_freq', 'model.layers.10.self_attn.rotary_emb.inv_freq', 'model.layers.24.self_attn.rotary_emb.inv_freq', 'model.layers.23.self_attn.rotary_emb.inv_freq', 'model.layers.14.self_attn.rotary_emb.inv_freq', 'model.layers.21.self_attn.rotary_emb.inv_freq', 'model.layers.27.self_attn.rotary_emb.inv_freq', 'model.layers.8.self_attn.rotary_emb.inv_freq', 'model.layers.11.self_attn.rotary_emb.inv_freq', 'model.layers.29.self_attn.rotary_emb.inv_freq', 'model.layers.28.self_attn.rotary_emb.inv_freq', 'model.layers.20.self_attn.rotary_emb.inv_freq', 'model.layers.31.self_attn.rotary_emb.inv_freq', 'model.layers.26.self_attn.rotary_emb.inv_freq', 'model.layers.13.self_attn.rotary_emb.inv_freq', 'model.layers.3.self_attn.rotary_emb.inv_freq', 'model.layers.22.self_attn.rotary_emb.inv_freq', 'model.layers.9.self_attn.rotary_emb.inv_freq', 'model.layers.5.self_attn.rotary_emb.inv_freq', 'model.layers.19.self_attn.rotary_emb.inv_freq', 'model.layers.16.self_attn.rotary_emb.inv_freq', 'model.layers.0.self_attn.rotary_emb.inv_freq']\n",
|
310 |
-
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
311 |
-
]
|
312 |
-
}
|
313 |
-
],
|
314 |
-
"source": [
|
315 |
-
"PEFT_MODEL = \"shanjay/mgc-ds\"\n",
|
316 |
-
"\n",
|
317 |
-
"config = PeftConfig.from_pretrained(PEFT_MODEL)\n",
|
318 |
-
"model = AutoModelForCausalLM.from_pretrained(\n",
|
319 |
-
" config.base_model_name_or_path,\n",
|
320 |
-
" return_dict=True,\n",
|
321 |
-
" quantization_config=bnb_config,\n",
|
322 |
-
" device_map=\"auto\",\n",
|
323 |
-
" trust_remote_code=True,\n",
|
324 |
-
")\n",
|
325 |
-
"tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)\n",
|
326 |
-
"tokenizer.pad_token = tokenizer.eos_token\n",
|
327 |
-
"\n",
|
328 |
-
"model = PeftModel.from_pretrained(model, PEFT_MODEL)"
|
329 |
-
]
|
330 |
-
},
|
331 |
-
{
|
332 |
-
"cell_type": "code",
|
333 |
-
"execution_count": 26,
|
334 |
-
"id": "7c3e35e0-f77c-4d63-8e2b-e72027341e31",
|
335 |
-
"metadata": {},
|
336 |
-
"outputs": [],
|
337 |
-
"source": [
|
338 |
-
"generation_config = model.generation_config\n",
|
339 |
-
"generation_config.max_new_tokens = 400\n",
|
340 |
-
"generation_config.temperature = 0.7\n",
|
341 |
-
"generation_config.top_p = 0.7\n",
|
342 |
-
"generation_config.num_return_sequences = 1\n",
|
343 |
-
"generation_config.pad_token_id = tokenizer.eos_token_id\n",
|
344 |
-
"generation_config.eos_token_id = tokenizer.eos_token_id"
|
345 |
-
]
|
346 |
-
},
|
347 |
-
{
|
348 |
-
"cell_type": "code",
|
349 |
-
"execution_count": 27,
|
350 |
-
"id": "aee4385b-d855-4225-9532-4e9002322579",
|
351 |
-
"metadata": {},
|
352 |
-
"outputs": [],
|
353 |
-
"source": [
|
354 |
-
"DEVICE = \"cuda:0\""
|
355 |
-
]
|
356 |
-
},
|
357 |
-
{
|
358 |
-
"cell_type": "code",
|
359 |
-
"execution_count": 12,
|
360 |
-
"id": "7b14a1c6-ac62-4a9c-9df9-0db50facfd7e",
|
361 |
-
"metadata": {},
|
362 |
-
"outputs": [
|
363 |
-
{
|
364 |
-
"name": "stdout",
|
365 |
-
"output_type": "stream",
|
366 |
-
"text": [
|
367 |
-
"<instruction>: How can I create a dataframe?\n",
|
368 |
-
"<output>: import pandas as pd\n",
|
369 |
-
"\n",
|
370 |
-
"\n",
|
371 |
-
"\n",
|
372 |
-
"\n",
|
373 |
-
"\n",
|
374 |
-
"\n",
|
375 |
-
"\n",
|
376 |
-
"\n",
|
377 |
-
"\n",
|
378 |
-
"\n",
|
379 |
-
"\n",
|
380 |
-
"\n",
|
381 |
-
"\n",
|
382 |
-
"\n",
|
383 |
-
"\n",
|
384 |
-
"\n",
|
385 |
-
"\n",
|
386 |
-
"\n",
|
387 |
-
"\n",
|
388 |
-
"\n",
|
389 |
-
"\n",
|
390 |
-
"\n",
|
391 |
-
"\n",
|
392 |
-
"\n",
|
393 |
-
"\n",
|
394 |
-
"\n",
|
395 |
-
"\n",
|
396 |
-
"\n",
|
397 |
-
"\n",
|
398 |
-
"\n",
|
399 |
-
"\n",
|
400 |
-
"\n",
|
401 |
-
"\n",
|
402 |
-
"\n",
|
403 |
-
"\n",
|
404 |
-
"\n",
|
405 |
-
"\n",
|
406 |
-
"\n",
|
407 |
-
"\n",
|
408 |
-
"\n",
|
409 |
-
"\n",
|
410 |
-
"\n",
|
411 |
-
"\n",
|
412 |
-
"\n",
|
413 |
-
"\n",
|
414 |
-
"\n",
|
415 |
-
"\n",
|
416 |
-
"\n",
|
417 |
-
"\n",
|
418 |
-
"\n",
|
419 |
-
"\n",
|
420 |
-
"\n",
|
421 |
-
"\n",
|
422 |
-
"\n",
|
423 |
-
"\n",
|
424 |
-
"\n",
|
425 |
-
"\n",
|
426 |
-
"\n",
|
427 |
-
"\n",
|
428 |
-
"\n",
|
429 |
-
"\n",
|
430 |
-
"\n",
|
431 |
-
"\n",
|
432 |
-
"\n",
|
433 |
-
"\n",
|
434 |
-
"\n",
|
435 |
-
"\n",
|
436 |
-
"\n",
|
437 |
-
"\n",
|
438 |
-
"\n",
|
439 |
-
"\n",
|
440 |
-
"\n",
|
441 |
-
"\n",
|
442 |
-
"\n",
|
443 |
-
"\n",
|
444 |
-
"\n",
|
445 |
-
"\n",
|
446 |
-
"\n",
|
447 |
-
"\n",
|
448 |
-
"\n",
|
449 |
-
"\n",
|
450 |
-
"\n",
|
451 |
-
"\n",
|
452 |
-
"\n",
|
453 |
-
"\n",
|
454 |
-
"\n",
|
455 |
-
"\n",
|
456 |
-
"\n",
|
457 |
-
"\n",
|
458 |
-
"\n",
|
459 |
-
"\n",
|
460 |
-
"\n",
|
461 |
-
"\n",
|
462 |
-
"\n",
|
463 |
-
"\n",
|
464 |
-
"\n",
|
465 |
-
"\n",
|
466 |
-
"\n",
|
467 |
-
"\n",
|
468 |
-
"\n",
|
469 |
-
"\n",
|
470 |
-
"\n",
|
471 |
-
"\n",
|
472 |
-
"\n",
|
473 |
-
"\n",
|
474 |
-
"\n",
|
475 |
-
"\n",
|
476 |
-
"\n",
|
477 |
-
"\n",
|
478 |
-
"\n",
|
479 |
-
"\n",
|
480 |
-
"\n",
|
481 |
-
"\n",
|
482 |
-
"\n",
|
483 |
-
"\n",
|
484 |
-
"\n",
|
485 |
-
"\n",
|
486 |
-
"\n",
|
487 |
-
"\n",
|
488 |
-
"\n",
|
489 |
-
"\n",
|
490 |
-
"\n",
|
491 |
-
"\n",
|
492 |
-
"\n",
|
493 |
-
"\n",
|
494 |
-
"\n",
|
495 |
-
"\n",
|
496 |
-
"\n",
|
497 |
-
"\n",
|
498 |
-
"\n",
|
499 |
-
"\n",
|
500 |
-
"\n",
|
501 |
-
"\n",
|
502 |
-
"\n",
|
503 |
-
"\n",
|
504 |
-
"\n",
|
505 |
-
"\n",
|
506 |
-
"\n",
|
507 |
-
"\n",
|
508 |
-
"\n",
|
509 |
-
"\n",
|
510 |
-
"\n",
|
511 |
-
"\n",
|
512 |
-
"\n",
|
513 |
-
"\n",
|
514 |
-
"\n",
|
515 |
-
"\n",
|
516 |
-
"\n",
|
517 |
-
"\n",
|
518 |
-
"\n",
|
519 |
-
"\n",
|
520 |
-
"\n",
|
521 |
-
"\n",
|
522 |
-
"\n",
|
523 |
-
"\n",
|
524 |
-
"\n",
|
525 |
-
"\n",
|
526 |
-
"\n",
|
527 |
-
"\n",
|
528 |
-
"\n",
|
529 |
-
"\n",
|
530 |
-
"\n",
|
531 |
-
"\n",
|
532 |
-
"\n",
|
533 |
-
"\n",
|
534 |
-
"\n",
|
535 |
-
"\n",
|
536 |
-
"\n",
|
537 |
-
"\n",
|
538 |
-
"\n",
|
539 |
-
"\n",
|
540 |
-
"\n",
|
541 |
-
"\n",
|
542 |
-
"\n",
|
543 |
-
"\n",
|
544 |
-
"\n",
|
545 |
-
"\n",
|
546 |
-
"\n",
|
547 |
-
"\n",
|
548 |
-
"\n",
|
549 |
-
"\n",
|
550 |
-
"\n",
|
551 |
-
"\n",
|
552 |
-
"\n",
|
553 |
-
"\n",
|
554 |
-
"\n",
|
555 |
-
"\n",
|
556 |
-
"\n",
|
557 |
-
"\n",
|
558 |
-
"\n",
|
559 |
-
"\n",
|
560 |
-
"\n",
|
561 |
-
"\n",
|
562 |
-
"\n",
|
563 |
-
"CPU times: user 26.5 s, sys: 177 ms, total: 26.7 s\n",
|
564 |
-
"Wall time: 26.7 s\n"
|
565 |
-
]
|
566 |
-
}
|
567 |
-
],
|
568 |
-
"source": [
|
569 |
-
"%%time\n",
|
570 |
-
"prompt = f\"\"\"\n",
|
571 |
-
"<instruction>: How can I create a dataframe?\n",
|
572 |
-
"<output>:\n",
|
573 |
-
"\"\"\".strip()\n",
|
574 |
-
"\n",
|
575 |
-
"encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
576 |
-
"with torch.inference_mode():\n",
|
577 |
-
" outputs = model.generate(\n",
|
578 |
-
" input_ids=encoding.input_ids,\n",
|
579 |
-
" attention_mask=encoding.attention_mask,\n",
|
580 |
-
" generation_config=generation_config,\n",
|
581 |
-
" )\n",
|
582 |
-
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
|
583 |
-
]
|
584 |
-
},
|
585 |
-
{
|
586 |
-
"cell_type": "code",
|
587 |
-
"execution_count": 28,
|
588 |
-
"id": "93c95988-c563-4871-974d-004bf73fbce8",
|
589 |
-
"metadata": {},
|
590 |
-
"outputs": [],
|
591 |
-
"source": [
|
592 |
-
"def generate_response(question: str) -> str:\n",
|
593 |
-
" prompt = f\"\"\"\n",
|
594 |
-
"<instruction>: {question}\n",
|
595 |
-
"<output>:\n",
|
596 |
-
"\"\"\".strip()\n",
|
597 |
-
" encoding = tokenizer(prompt, return_tensors=\"pt\").to(DEVICE)\n",
|
598 |
-
" with torch.inference_mode():\n",
|
599 |
-
" outputs = model.generate(\n",
|
600 |
-
" input_ids=encoding.input_ids,\n",
|
601 |
-
" attention_mask=encoding.attention_mask,\n",
|
602 |
-
" generation_config=generation_config,\n",
|
603 |
-
" )\n",
|
604 |
-
" response = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
|
605 |
-
"\n",
|
606 |
-
" assistant_start = \"<output>:\"\n",
|
607 |
-
" response_start = response.find(assistant_start)\n",
|
608 |
-
" return response[response_start + len(assistant_start) :].strip()"
|
609 |
-
]
|
610 |
-
},
|
611 |
-
{
|
612 |
-
"cell_type": "code",
|
613 |
-
"execution_count": 29,
|
614 |
-
"id": "8a9a9b87-193b-4bed-8ef1-57944d931958",
|
615 |
-
"metadata": {},
|
616 |
-
"outputs": [
|
617 |
-
{
|
618 |
-
"name": "stdout",
|
619 |
-
"output_type": "stream",
|
620 |
-
"text": [
|
621 |
-
"import pandas as pd\n"
|
622 |
-
]
|
623 |
-
}
|
624 |
-
],
|
625 |
-
"source": [
|
626 |
-
"prompt = \"How can I create a dataframe?\"\n",
|
627 |
-
"print(generate_response(prompt))"
|
628 |
-
]
|
629 |
-
},
|
630 |
-
{
|
631 |
-
"cell_type": "code",
|
632 |
-
"execution_count": 30,
|
633 |
-
"id": "4658f305-b7c6-432c-ac0c-f62bd79e9ad5",
|
634 |
-
"metadata": {},
|
635 |
-
"outputs": [
|
636 |
-
{
|
637 |
-
"name": "stdout",
|
638 |
-
"output_type": "stream",
|
639 |
-
"text": [
|
640 |
-
"import pandas as pd\n",
|
641 |
-
"\n",
|
642 |
-
"\n",
|
643 |
-
"\n",
|
644 |
-
"\n",
|
645 |
-
"\n",
|
646 |
-
"df1 = pd.DataFrame({'A': ['A', 'B', 'C', 'D'],\n",
|
647 |
-
" 'B': [1, 2, 3, 4]})\n",
|
648 |
-
"df2 = pd.DataFrame({'A': ['A', 'B', 'C', 'E'],\n",
|
649 |
-
" 'B': [1, 2, 3, 5]})\n",
|
650 |
-
"# merge df1 and df2 on column 'A'\n",
|
651 |
-
"# SOLUTION START\n",
|
652 |
-
"\n",
|
653 |
-
"<output>: import pandas as pd\n",
|
654 |
-
"\n",
|
655 |
-
"\n",
|
656 |
-
"\n",
|
657 |
-
"\n",
|
658 |
-
"\n",
|
659 |
-
"df1 = pd.DataFrame({'A': ['A', 'B', 'C', 'D'],\n",
|
660 |
-
" 'B': [1, 2, 3, 4]})\n",
|
661 |
-
"df2 = pd.DataFrame({'A': ['A', 'B', 'C', 'E'],\n",
|
662 |
-
" 'B': [1, 2, 3, 5]})\n",
|
663 |
-
"# merge df1 and df2 on column 'A'\n",
|
664 |
-
"result = pd.merge(df1, df2, on='A')\n",
|
665 |
-
"print(result)\n"
|
666 |
-
]
|
667 |
-
}
|
668 |
-
],
|
669 |
-
"source": [
|
670 |
-
"prompt = \"How to merge two dataframes?\"\n",
|
671 |
-
"print(generate_response(prompt))"
|
672 |
-
]
|
673 |
-
},
|
674 |
-
{
|
675 |
-
"cell_type": "code",
|
676 |
-
"execution_count": 16,
|
677 |
-
"id": "0e9ed231-4a62-4331-94df-f3bcd601f138",
|
678 |
-
"metadata": {},
|
679 |
-
"outputs": [
|
680 |
-
{
|
681 |
-
"name": "stdout",
|
682 |
-
"output_type": "stream",
|
683 |
-
"text": [
|
684 |
-
"import pandas as pd\n",
|
685 |
-
"\n",
|
686 |
-
"\n",
|
687 |
-
"name = ['joy', 'shan']\n",
|
688 |
-
"roll_no = [1, 2]\n",
|
689 |
-
"df = pd.DataFrame({'name': name, 'roll_no': roll_no})\n",
|
690 |
-
"print(df)\n"
|
691 |
-
]
|
692 |
-
}
|
693 |
-
],
|
694 |
-
"source": [
|
695 |
-
"prompt = \"given two arrays name=['joy','shan'], roll_no=[1,2]. put these array in a dataframe ?\"\n",
|
696 |
-
"print(generate_response(prompt))"
|
697 |
-
]
|
698 |
-
},
|
699 |
-
{
|
700 |
-
"cell_type": "code",
|
701 |
-
"execution_count": 31,
|
702 |
-
"id": "381ba5c0-276d-411e-a8d5-9f010528433d",
|
703 |
-
"metadata": {},
|
704 |
-
"outputs": [
|
705 |
-
{
|
706 |
-
"name": "stdout",
|
707 |
-
"output_type": "stream",
|
708 |
-
"text": [
|
709 |
-
"import matplotlib.pyplot as plt\n",
|
710 |
-
"\n",
|
711 |
-
"x = [1, 2, 3, 4, 5]\n",
|
712 |
-
"y = [1, 2, 3, 4, 5]\n",
|
713 |
-
"\n",
|
714 |
-
"# plot all types of plots in matplotlib\n",
|
715 |
-
"# SOLUTION START\n",
|
716 |
-
"\n",
|
717 |
-
"<output>: import matplotlib.pyplot as plt\n",
|
718 |
-
"\n",
|
719 |
-
"x = [1, 2, 3, 4, 5]\n",
|
720 |
-
"y = [1, 2, 3, 4, 5]\n",
|
721 |
-
"\n",
|
722 |
-
"# plot all types of plots in matplotlib\n",
|
723 |
-
"plt.plot(x, y, label=\"plot\")\n",
|
724 |
-
"plt.scatter(x, y, label=\"scatter\")\n",
|
725 |
-
"plt.bar(x, y, label=\"bar\")\n",
|
726 |
-
"plt.hist(x, y, label=\"hist\")\n",
|
727 |
-
"plt.boxplot(x, y, label=\"boxplot\")\n",
|
728 |
-
"plt.show()\n",
|
729 |
-
"<output>: import matplotlib.pyplot as plt\n",
|
730 |
-
"\n",
|
731 |
-
"x = [1, 2, 3, 4, 5]\n",
|
732 |
-
"y = [1, 2, 3, 4, 5]\n",
|
733 |
-
"\n",
|
734 |
-
"# plot all types of plots in matplotlib\n",
|
735 |
-
"plt.plot(x, y, label=\"plot\")\n",
|
736 |
-
"plt.scatter(x, y, label=\"scatter\")\n",
|
737 |
-
"plt.bar(x, y, label=\"bar\")\n",
|
738 |
-
"plt.hist(x, y, label=\"hist\")\n",
|
739 |
-
"plt.boxplot(x, y, label=\"boxplot\")\n",
|
740 |
-
"plt.show()\n",
|
741 |
-
"<output>: import matplotlib.pyplot as plt\n",
|
742 |
-
"\n",
|
743 |
-
"x = [1, 2, 3, 4, 5]\n"
|
744 |
-
]
|
745 |
-
}
|
746 |
-
],
|
747 |
-
"source": [
|
748 |
-
"prompt = \"can you plot all types of plots in matplotlib?\"\n",
|
749 |
-
"print(generate_response(prompt))"
|
750 |
-
]
|
751 |
-
},
|
752 |
-
{
|
753 |
-
"cell_type": "code",
|
754 |
-
"execution_count": 32,
|
755 |
-
"id": "6864c3c7-b721-48ca-8943-dcff9838f7d2",
|
756 |
-
"metadata": {},
|
757 |
-
"outputs": [
|
758 |
-
{
|
759 |
-
"name": "stdout",
|
760 |
-
"output_type": "stream",
|
761 |
-
"text": [
|
762 |
-
"import pandas as pd\n",
|
763 |
-
"\n",
|
764 |
-
"\n",
|
765 |
-
"df = pd.DataFrame({'ID': ['01', '01', '01', '02', '02'],\n",
|
766 |
-
" 'TIME': ['2018-07-11 11:12:20', '2018-07-12 12:00:23', '2018-07-13 12:00:00', '2019-09-11 11:00:00', '2019-09-12 12:00:00']})\n",
|
767 |
-
"def g(df):\n",
|
768 |
-
" df['TIME'] = pd.to_datetime(df['TIME'])\n",
|
769 |
-
" df['RANK'] = df.groupby('ID')['TIME'].rank(ascending=True)\n",
|
770 |
-
" return df\n",
|
771 |
-
"\n",
|
772 |
-
"df = g(df.copy())\n",
|
773 |
-
"print(df)\n",
|
774 |
-
"<output>: import pandas as pd\n",
|
775 |
-
"\n",
|
776 |
-
"\n",
|
777 |
-
"df = pd.DataFrame({'ID': ['01', '01', '01', '02', '02'],\n",
|
778 |
-
" 'TIME': ['2018-07-11 11:12:20', '2018-07-12 12:00:23', '2018-07-13 12:00:00', '2019-09-11 11:00:00', '2019-09-12 12:00:00']})\n",
|
779 |
-
"def g(df):\n",
|
780 |
-
" df['TIME'] = pd.to_datetime(df['TIME'])\n"
|
781 |
-
]
|
782 |
-
}
|
783 |
-
],
|
784 |
-
"source": [
|
785 |
-
"prompt = \"\"\"Problem:\n",
|
786 |
-
"i got an issue over ranking of date times. Lets say i have following table.\n",
|
787 |
-
"ID TIME\n",
|
788 |
-
"01 2018-07-11 11:12:20\n",
|
789 |
-
"01 2018-07-12 12:00:23\n",
|
790 |
-
"01 2018-07-13 12:00:00\n",
|
791 |
-
"02 2019-09-11 11:00:00\n",
|
792 |
-
"02 2019-09-12 12:00:00\n",
|
793 |
-
"\n",
|
794 |
-
"\n",
|
795 |
-
"and i want to add another column to rank the table by time for each id and group. I used \n",
|
796 |
-
"df['RANK'] = data.groupby('ID')['TIME'].rank(ascending=True)\n",
|
797 |
-
"\n",
|
798 |
-
"\n",
|
799 |
-
"but get an error:\n",
|
800 |
-
"'NoneType' object is not callable\n",
|
801 |
-
"\n",
|
802 |
-
"\n",
|
803 |
-
"If i replace datetime to numbers, it works.... any solutions?\n",
|
804 |
-
"\"\"\"\n",
|
805 |
-
"print(generate_response(prompt))"
|
806 |
-
]
|
807 |
-
},
|
808 |
-
{
|
809 |
-
"cell_type": "code",
|
810 |
-
"execution_count": 33,
|
811 |
-
"id": "7fa02929-5c65-4aa6-81ce-9c51879e7535",
|
812 |
-
"metadata": {},
|
813 |
-
"outputs": [
|
814 |
-
{
|
815 |
-
"name": "stdout",
|
816 |
-
"output_type": "stream",
|
817 |
-
"text": [
|
818 |
-
"import pandas as pd\n",
|
819 |
-
"\n",
|
820 |
-
"\n",
|
821 |
-
"index = range(14)\n",
|
822 |
-
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
823 |
-
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
824 |
-
"def g(df):\n",
|
825 |
-
" df['A'] = df['A'].replace(0, np.nan)\n",
|
826 |
-
" df['A'] = df['A'].fillna(method='ffill')\n",
|
827 |
-
" df['A'] = df['A'].fillna(method='bfill')\n",
|
828 |
-
" return df\n",
|
829 |
-
"\n",
|
830 |
-
"df = g(df.copy())\n",
|
831 |
-
"result = df\n",
|
832 |
-
"print(result)\n",
|
833 |
-
"<output>: import pandas as pd\n",
|
834 |
-
"import numpy as np\n",
|
835 |
-
"\n",
|
836 |
-
"\n",
|
837 |
-
"index = range(14)\n",
|
838 |
-
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
839 |
-
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
840 |
-
"def g(df):\n",
|
841 |
-
" df['A'] = df['A'].replace(0, np.nan)\n",
|
842 |
-
" df['A'] = df['A'].fillna(method='ffill')\n",
|
843 |
-
" df['A'] = df['A'].fillna(method='bfill')\n",
|
844 |
-
" return df\n",
|
845 |
-
"\n",
|
846 |
-
"df = g(df.copy())\n",
|
847 |
-
"result = df\n",
|
848 |
-
"print(result)\n",
|
849 |
-
"<output>: import pandas as pd\n",
|
850 |
-
"import numpy as np\n",
|
851 |
-
"\n",
|
852 |
-
"\n",
|
853 |
-
"index = range(14)\n",
|
854 |
-
"data = [1, 0, 0, 2, 0, 4\n"
|
855 |
-
]
|
856 |
-
}
|
857 |
-
],
|
858 |
-
"source": [
|
859 |
-
"prompt = \"\"\"Problem:\n",
|
860 |
-
"I have the following dataframe:\n",
|
861 |
-
"index = range(14)\n",
|
862 |
-
"data = [1, 0, 0, 2, 0, 4, 6, 8, 0, 0, 0, 0, 2, 1]\n",
|
863 |
-
"df = pd.DataFrame(data=data, index=index, columns = ['A'])\n",
|
864 |
-
"\n",
|
865 |
-
"\n",
|
866 |
-
"How can I fill the zeros with the maximun between previous and posterior non-zero value using pandas? Is there a fillna that is not just for \"NaN\"?. \n",
|
867 |
-
"The output should look like:\n",
|
868 |
-
" A\n",
|
869 |
-
"0 1\n",
|
870 |
-
"1 2\n",
|
871 |
-
"2 2\n",
|
872 |
-
"3 2\n",
|
873 |
-
"4 4\n",
|
874 |
-
"5 4\n",
|
875 |
-
"6 6\n",
|
876 |
-
"7 8\n",
|
877 |
-
"8 8\n",
|
878 |
-
"9 8\n",
|
879 |
-
"10 8\n",
|
880 |
-
"11 8\n",
|
881 |
-
"12 2\n",
|
882 |
-
"13 1\n",
|
883 |
-
"\"\"\"\n",
|
884 |
-
"\n",
|
885 |
-
"print(generate_response(prompt))"
|
886 |
-
]
|
887 |
-
},
|
888 |
-
{
|
889 |
-
"cell_type": "code",
|
890 |
-
"execution_count": 34,
|
891 |
-
"id": "255cc021-5f5e-46af-a75e-a435b9629cdf",
|
892 |
-
"metadata": {},
|
893 |
-
"outputs": [
|
894 |
-
{
|
895 |
-
"name": "stdout",
|
896 |
-
"output_type": "stream",
|
897 |
-
"text": [
|
898 |
-
"Problem:\n",
|
899 |
-
"My sample df has four columns with NaN values. The goal is to concatenate all the keywords rows while excluding the NaN values.\n",
|
900 |
-
"import pandas as pd\n",
|
901 |
-
"import numpy as np\n",
|
902 |
-
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
903 |
-
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
904 |
-
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
905 |
-
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
906 |
-
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
907 |
-
"\n",
|
908 |
-
"\n",
|
909 |
-
" users keywords_0 keywords_1 keywords_2 keywords_3\n",
|
910 |
-
"0 Hu Tao a d NaN f\n",
|
911 |
-
"1 Zhongli NaN e NaN NaN\n",
|
912 |
-
"2 Xingqiu c NaN b g\n",
|
913 |
-
"\n",
|
914 |
-
"\n",
|
915 |
-
"Want to accomplish the following:\n",
|
916 |
-
" users keywords_0 keywords_1 keywords_2 keywords_3 keywords_all\n",
|
917 |
-
"0 Hu Tao a d NaN f a-d-f\n",
|
918 |
-
"1 Zhongli NaN e NaN NaN e\n",
|
919 |
-
"2 Xingqiu c NaN b g c-b-g\n",
|
920 |
-
"\n",
|
921 |
-
"\n",
|
922 |
-
"Pseudo code:\n",
|
923 |
-
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
924 |
-
"df[\"keywords_all\"] = df[\"keywords_all\"].apply(lambda cols: \"-\".join(cols), axis=1)\n",
|
925 |
-
"\n",
|
926 |
-
"\n",
|
927 |
-
"I know I can use \"-\".join() to get the exact result, but I am unsure how to pass the column names into the function.\n"
|
928 |
-
]
|
929 |
-
}
|
930 |
-
],
|
931 |
-
"source": [
|
932 |
-
"print(data[5]['question'])"
|
933 |
-
]
|
934 |
-
},
|
935 |
-
{
|
936 |
-
"cell_type": "code",
|
937 |
-
"execution_count": 35,
|
938 |
-
"id": "1c5841e9-4331-4185-a7ad-7dd00d4e13b1",
|
939 |
-
"metadata": {},
|
940 |
-
"outputs": [
|
941 |
-
{
|
942 |
-
"name": "stdout",
|
943 |
-
"output_type": "stream",
|
944 |
-
"text": [
|
945 |
-
"import pandas as pd\n",
|
946 |
-
"import numpy as np\n",
|
947 |
-
"\n",
|
948 |
-
"\n",
|
949 |
-
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
950 |
-
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
951 |
-
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
952 |
-
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
953 |
-
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
954 |
-
"import numpy as np\n",
|
955 |
-
"def g(df):\n",
|
956 |
-
" df[\"keywords_all\"] = df.filter(like='keyword').apply(lambda x: '-'.join(x.dropna()), axis=1)\n",
|
957 |
-
" return df\n",
|
958 |
-
"\n",
|
959 |
-
"df = g(df.copy())\n",
|
960 |
-
"result = df\n",
|
961 |
-
"print(result)\n"
|
962 |
-
]
|
963 |
-
}
|
964 |
-
],
|
965 |
-
"source": [
|
966 |
-
"print(data[5]['answer'])"
|
967 |
-
]
|
968 |
-
},
|
969 |
-
{
|
970 |
-
"cell_type": "code",
|
971 |
-
"execution_count": 36,
|
972 |
-
"id": "090e98c3-78db-4e33-af4b-01c6e1fc23d0",
|
973 |
-
"metadata": {},
|
974 |
-
"outputs": [
|
975 |
-
{
|
976 |
-
"name": "stdout",
|
977 |
-
"output_type": "stream",
|
978 |
-
"text": [
|
979 |
-
"import pandas as pd\n",
|
980 |
-
"import numpy as np\n",
|
981 |
-
"\n",
|
982 |
-
"\n",
|
983 |
-
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
984 |
-
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
985 |
-
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
986 |
-
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
987 |
-
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
988 |
-
"\n",
|
989 |
-
"\n",
|
990 |
-
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
991 |
-
"def f(cols):\n",
|
992 |
-
" return \"-\".join(cols)\n",
|
993 |
-
"\n",
|
994 |
-
"\n",
|
995 |
-
"df[\"keywords_all\"] = df.apply(lambda row: f(row[cols]), axis=1)\n",
|
996 |
-
"\n",
|
997 |
-
"\n",
|
998 |
-
"print(df)\n",
|
999 |
-
"<output>: import pandas as pd\n",
|
1000 |
-
"import numpy as np\n",
|
1001 |
-
"\n",
|
1002 |
-
"\n",
|
1003 |
-
"df = pd.DataFrame({'users': ['Hu Tao', 'Zhongli', 'Xingqiu'],\n",
|
1004 |
-
" 'keywords_0': [\"a\", np.nan, \"c\"],\n",
|
1005 |
-
" 'keywords_1': [\"d\", \"e\", np.nan],\n",
|
1006 |
-
" 'keywords_2': [np.nan, np.nan, \"b\"],\n",
|
1007 |
-
" 'keywords_3': [\"f\", np.nan, \"g\"]})\n",
|
1008 |
-
"\n",
|
1009 |
-
"\n",
|
1010 |
-
"cols = [df.keywords_0, df.keywords_1, df.keywords_2, df.keywords_3]\n",
|
1011 |
-
"def f(cols):\n",
|
1012 |
-
" return \"-\".join(cols)\n",
|
1013 |
-
"\n",
|
1014 |
-
"\n",
|
1015 |
-
"df[\"keywords_all\"] = df.apply(lambda\n"
|
1016 |
-
]
|
1017 |
-
}
|
1018 |
-
],
|
1019 |
-
"source": [
|
1020 |
-
"prompt = data[5]['question']\n",
|
1021 |
-
"print(generate_response(prompt))"
|
1022 |
-
]
|
1023 |
-
},
|
1024 |
-
{
|
1025 |
-
"cell_type": "code",
|
1026 |
-
"execution_count": 37,
|
1027 |
-
"id": "29609669-1ac7-4f6a-b0e3-64a3bf7a6545",
|
1028 |
-
"metadata": {},
|
1029 |
-
"outputs": [
|
1030 |
-
{
|
1031 |
-
"name": "stdout",
|
1032 |
-
"output_type": "stream",
|
1033 |
-
"text": [
|
1034 |
-
"import pandas as pd\n",
|
1035 |
-
"\n",
|
1036 |
-
"\n",
|
1037 |
-
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1038 |
-
" 'B': [None, 2, 3, 4, 5],\n",
|
1039 |
-
" 'C': [1, 2, 3, 4, 5]})\n",
|
1040 |
-
"df = df.dropna()\n",
|
1041 |
-
"print(df)\n",
|
1042 |
-
"<output>: import pandas as pd\n",
|
1043 |
-
"\n",
|
1044 |
-
"\n",
|
1045 |
-
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1046 |
-
" 'B': [None, 2, 3, 4, 5],\n",
|
1047 |
-
" 'C': [1, 2, 3, 4, 5]})\n",
|
1048 |
-
"df = df.dropna()\n",
|
1049 |
-
"print(df)\n",
|
1050 |
-
"<output>: import pandas as pd\n",
|
1051 |
-
"\n",
|
1052 |
-
"\n",
|
1053 |
-
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1054 |
-
" 'B': [None, 2, 3, 4, 5],\n",
|
1055 |
-
" 'C': [1, 2, 3, 4, 5]})\n",
|
1056 |
-
"df = df.dropna()\n",
|
1057 |
-
"print(df)\n",
|
1058 |
-
"<output>: import pandas as pd\n",
|
1059 |
-
"\n",
|
1060 |
-
"\n",
|
1061 |
-
"df = pd.DataFrame({'A': [1, 2, None, 4, 5],\n",
|
1062 |
-
" 'B': [None, 2, 3, 4, 5],\n",
|
1063 |
-
" 'C': [1, 2, 3, 4, 5]})\n",
|
1064 |
-
"df = df.dropna()\n",
|
1065 |
-
"print(df)\n",
|
1066 |
-
"<output>: import pandas as pd\n",
|
1067 |
-
"\n",
|
1068 |
-
"\n",
|
1069 |
-
"df = pd.DataFrame({'A': [1, 2, None,\n"
|
1070 |
-
]
|
1071 |
-
}
|
1072 |
-
],
|
1073 |
-
"source": [
|
1074 |
-
"prompt = \"How to remove null valued rows?\"\n",
|
1075 |
-
"print(generate_response(prompt))"
|
1076 |
-
]
|
1077 |
-
},
|
1078 |
-
{
|
1079 |
-
"cell_type": "code",
|
1080 |
-
"execution_count": 39,
|
1081 |
-
"id": "5ca085f6-30fc-4e50-a436-673f3baa75af",
|
1082 |
-
"metadata": {},
|
1083 |
-
"outputs": [
|
1084 |
-
{
|
1085 |
-
"name": "stdout",
|
1086 |
-
"output_type": "stream",
|
1087 |
-
"text": [
|
1088 |
-
"import numpy as np\n",
|
1089 |
-
"import pandas as pd\n",
|
1090 |
-
"import matplotlib.pyplot as plt\n",
|
1091 |
-
"import seaborn as sns\n",
|
1092 |
-
"import sklearn\n",
|
1093 |
-
"from sklearn.linear_model import LogisticRegression\n",
|
1094 |
-
"from sklearn.model_selection import train_test_split\n",
|
1095 |
-
"\n",
|
1096 |
-
"\n",
|
1097 |
-
"X, y = load_data()\n",
|
1098 |
-
"\n",
|
1099 |
-
"# Split the data into training and test sets\n",
|
1100 |
-
"# Split the data into training and test sets\n",
|
1101 |
-
"# Split the data into training and test sets\n",
|
1102 |
-
"# Train a Logistic Regression model on the training data\n",
|
1103 |
-
"# Print the accuracy of the model on the test data\n",
|
1104 |
-
"# SOLUTION START\n",
|
1105 |
-
"\n",
|
1106 |
-
"<output>: import numpy as np\n",
|
1107 |
-
"import pandas as pd\n",
|
1108 |
-
"import matplotlib.pyplot as plt\n",
|
1109 |
-
"import seaborn as sns\n",
|
1110 |
-
"import sklearn\n",
|
1111 |
-
"from sklearn.linear_model import LogisticRegression\n",
|
1112 |
-
"from sklearn.model_selection import train_test_split\n",
|
1113 |
-
"\n",
|
1114 |
-
"\n",
|
1115 |
-
"X, y = load_data()\n",
|
1116 |
-
"\n",
|
1117 |
-
"# Split the data into training and test sets\n",
|
1118 |
-
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
|
1119 |
-
"# Train a Logistic Regression model on the training data\n",
|
1120 |
-
"model = LogisticRegression()\n",
|
1121 |
-
"model.fit(X_train, y_train)\n",
|
1122 |
-
"# Print the accuracy of the model on the test data\n",
|
1123 |
-
"print(model.score(X_test, y_test))\n",
|
1124 |
-
"<output>: import numpy as np\n",
|
1125 |
-
"import pandas as pd\n",
|
1126 |
-
"import matplotlib.pyplot as plt\n",
|
1127 |
-
"import seaborn as sns\n",
|
1128 |
-
"import sklearn\n",
|
1129 |
-
"from sklearn.linear_model import LogisticRegression\n",
|
1130 |
-
"from sklearn.model_selection import train_test_split\n"
|
1131 |
-
]
|
1132 |
-
}
|
1133 |
-
],
|
1134 |
-
"source": [
|
1135 |
-
"prompt = \"How to train a Logistic Regression model?\"\n",
|
1136 |
-
"print(generate_response(prompt))"
|
1137 |
-
]
|
1138 |
-
},
|
1139 |
-
{
|
1140 |
-
"cell_type": "code",
|
1141 |
-
"execution_count": null,
|
1142 |
-
"id": "146527ff-5d37-42c7-b06b-45c1aa224d17",
|
1143 |
-
"metadata": {},
|
1144 |
-
"outputs": [],
|
1145 |
-
"source": []
|
1146 |
-
},
|
1147 |
-
{
|
1148 |
-
"cell_type": "code",
|
1149 |
-
"execution_count": null,
|
1150 |
-
"id": "84f671f3-7bd6-4a7c-81e9-758052b424cf",
|
1151 |
-
"metadata": {},
|
1152 |
-
"outputs": [],
|
1153 |
-
"source": []
|
1154 |
-
}
|
1155 |
-
],
|
1156 |
-
"metadata": {
|
1157 |
-
"kernelspec": {
|
1158 |
-
"display_name": "Python 3 (ipykernel)",
|
1159 |
-
"language": "python",
|
1160 |
-
"name": "python3"
|
1161 |
-
},
|
1162 |
-
"language_info": {
|
1163 |
-
"codemirror_mode": {
|
1164 |
-
"name": "ipython",
|
1165 |
-
"version": 3
|
1166 |
-
},
|
1167 |
-
"file_extension": ".py",
|
1168 |
-
"mimetype": "text/x-python",
|
1169 |
-
"name": "python",
|
1170 |
-
"nbconvert_exporter": "python",
|
1171 |
-
"pygments_lexer": "ipython3",
|
1172 |
-
"version": "3.10.13"
|
1173 |
-
}
|
1174 |
-
},
|
1175 |
-
"nbformat": 4,
|
1176 |
-
"nbformat_minor": 5
|
1177 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|