shapermindai
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -14,18 +14,7 @@ tags:
|
|
14 |
- gemma
|
15 |
---
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
20 |
-
|
21 |
-
This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
|
22 |
-
|
23 |
-
## Model Details
|
24 |
-
|
25 |
-
### Model Description
|
26 |
-
|
27 |
-
<!-- Provide a longer summary of what this model is. -->
|
28 |
-
|
29 |
|
30 |
|
31 |
- **Developed by:** UnityAI Projects
|
@@ -107,72 +96,20 @@ While Code-GEMMA-7B is a robust and versatile AI model designed to assist in a v
|
|
107 |
|
108 |
Use the code below to get started with the model.
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
## Training Details
|
113 |
-
|
114 |
-
### Training Data
|
115 |
-
|
116 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
117 |
-
|
118 |
-
[More Information Needed]
|
119 |
-
|
120 |
-
### Training Procedure
|
121 |
-
|
122 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
123 |
-
|
124 |
-
#### Preprocessing [optional]
|
125 |
-
|
126 |
-
[More Information Needed]
|
127 |
-
|
128 |
-
|
129 |
-
#### Training Hyperparameters
|
130 |
-
|
131 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
132 |
-
|
133 |
-
#### Speeds, Sizes, Times [optional]
|
134 |
-
|
135 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
136 |
-
|
137 |
-
[More Information Needed]
|
138 |
-
|
139 |
-
## Evaluation
|
140 |
-
|
141 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
142 |
-
|
143 |
-
### Testing Data, Factors & Metrics
|
144 |
-
|
145 |
-
#### Testing Data
|
146 |
-
|
147 |
-
<!-- This should link to a Dataset Card if possible. -->
|
148 |
-
|
149 |
-
[More Information Needed]
|
150 |
|
151 |
-
|
|
|
152 |
|
153 |
-
|
|
|
154 |
|
155 |
-
|
|
|
|
|
156 |
|
157 |
-
#### Metrics
|
158 |
|
159 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
### Results
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Summary
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
## Model Examination [optional]
|
172 |
-
|
173 |
-
<!-- Relevant interpretability work for the model goes here -->
|
174 |
-
|
175 |
-
[More Information Needed]
|
176 |
|
177 |
## Environmental Impact
|
178 |
|
@@ -182,54 +119,20 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
182 |
|
183 |
- **Hardware Type:** A10 24 GB x1
|
184 |
- **Hours used:** 10h 22m 21s
|
185 |
-
- **Cloud Provider:**
|
186 |
-
- **Compute Region:**
|
187 |
- **Carbon Emitted:** [More Information Needed]
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
### Model Architecture and Objective
|
192 |
-
|
193 |
-
[More Information Needed]
|
194 |
-
|
195 |
-
### Compute Infrastructure
|
196 |
-
|
197 |
-
[More Information Needed]
|
198 |
-
|
199 |
-
#### Hardware
|
200 |
-
|
201 |
-
[More Information Needed]
|
202 |
-
|
203 |
-
#### Software
|
204 |
-
|
205 |
-
[More Information Needed]
|
206 |
-
|
207 |
-
## Citation [optional]
|
208 |
-
|
209 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
210 |
-
|
211 |
-
**BibTeX:**
|
212 |
-
|
213 |
-
[More Information Needed]
|
214 |
-
|
215 |
-
**APA:**
|
216 |
-
|
217 |
-
[More Information Needed]
|
218 |
-
|
219 |
-
## Glossary [optional]
|
220 |
-
|
221 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
222 |
-
|
223 |
-
[More Information Needed]
|
224 |
|
225 |
-
|
226 |
|
227 |
-
|
228 |
|
229 |
-
## Model Card Authors
|
230 |
|
231 |
-
|
232 |
|
233 |
## Model Card Contact
|
234 |
|
235 |
-
|
|
|
14 |
- gemma
|
15 |
---
|
16 |
|
17 |
+
# Code-Gemma-7b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
- **Developed by:** UnityAI Projects
|
|
|
96 |
|
97 |
Use the code below to get started with the model.
|
98 |
|
99 |
+
```python
|
100 |
+
from transformers import AutoModelWithHeads, AdapterType
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
# Load the model from your repository
|
103 |
+
model = AutoModelWithHeads.from_pretrained("shapermindai/code-gemma-7b")
|
104 |
|
105 |
+
# Add an adapter to the model
|
106 |
+
model.load_adapter("gemmadapter")
|
107 |
|
108 |
+
# Set the adapter type
|
109 |
+
model.set_active_adapters(AdapterType.text_task, "gemmadapter")
|
110 |
+
```
|
111 |
|
|
|
112 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
## Environmental Impact
|
115 |
|
|
|
119 |
|
120 |
- **Hardware Type:** A10 24 GB x1
|
121 |
- **Hours used:** 10h 22m 21s
|
122 |
+
- **Cloud Provider:** Predibase
|
123 |
+
- **Compute Region:** US
|
124 |
- **Carbon Emitted:** [More Information Needed]
|
125 |
|
126 |
+
Experiments were conducted using Google Cloud Platform in region northamerica-northeast1, which has a carbon efficiency of 0.03 kgCO$_2$eq/kWh. A cumulative of 10.5 hours of computation was performed on hardware of type A100 PCIe 40/80GB (TDP of 250W).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
Total emissions are estimated to be 0.08 kgCO$_2$eq of which 100 percents were directly offset by the cloud provider.
|
129 |
|
130 |
+
Estimations were conducted using the \href{https://mlco2.github.io/impact#compute}{MachineLearning Impact calculator} presented in \cite{lacoste2019quantifying}.
|
131 |
|
132 |
+
## Model Card Authors
|
133 |
|
134 |
+
Perplexity AI, UnityAI Projects, Alex Scott
|
135 |
|
136 |
## Model Card Contact
|
137 |
|
138 |