shariar076 commited on
Commit
372b1ac
·
verified ·
1 Parent(s): 6c68227

Upload folder using huggingface_hub

Browse files
adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llava-hf/llava-v1.6-mistral-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": [
12
+ 14,
13
+ 15,
14
+ 16
15
+ ],
16
+ "loftq_config": {},
17
+ "lora_alpha": 16,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "q_proj",
29
+ "k_proj",
30
+ "gate_proj",
31
+ "down_proj",
32
+ "up_proj",
33
+ "o_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "use_dora": false,
37
+ "use_rslora": false
38
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fff09724160dcf4cf64f0f6eb34e5721245c37d345a0397afa63ea29ef656359
3
+ size 8463296
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<image>": 32000,
3
+ "<pad>": 32001
4
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' %}{{ '<<SYS>>\n' + message['content'][0]['text'] + '\n<</SYS>>\n\n' }}{% elif message['role'] == 'user' %}{{ '[INST] ' }}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] }}{% endfor %}{{' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'][0]['text'] + '<\\s> '}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}"
3
+ }
checkpoint-150/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: llava-hf/llava-v1.6-mistral-7b-hf
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.13.2
checkpoint-150/adapter_config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "llava-hf/llava-v1.6-mistral-7b-hf",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": [
12
+ 14,
13
+ 15,
14
+ 16
15
+ ],
16
+ "loftq_config": {},
17
+ "lora_alpha": 16,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 16,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": [
27
+ "v_proj",
28
+ "q_proj",
29
+ "k_proj",
30
+ "gate_proj",
31
+ "down_proj",
32
+ "up_proj",
33
+ "o_proj"
34
+ ],
35
+ "task_type": "CAUSAL_LM",
36
+ "use_dora": false,
37
+ "use_rslora": false
38
+ }
checkpoint-150/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fff09724160dcf4cf64f0f6eb34e5721245c37d345a0397afa63ea29ef656359
3
+ size 8463296
checkpoint-150/added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<image>": 32000,
3
+ "<pad>": 32001
4
+ }
checkpoint-150/global_step150/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33992f71b8ea90c3f5cfd267a2f625331da9e5fd80e8d7717bd0605209880fee
3
+ size 50735920
checkpoint-150/global_step150/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:44d38c911bfdfd7c9affdd57852004c18e58c6879b7edf4f2c0468d5f13bd68e
3
+ size 8572972
checkpoint-150/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step150
checkpoint-150/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5edd7f3ff6a59dc0a2b336b5a3ee54fd3c5109f037c294f92c82c3c440b2aa98
3
+ size 14244
checkpoint-150/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e798919863d5686f94541bc841a519bc9110a8f1214e3a80d4ecfaac070dc79
3
+ size 1000
checkpoint-150/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
checkpoint-150/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-150/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
checkpoint-150/tokenizer_config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<image>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<pad>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ }
46
+ },
47
+ "additional_special_tokens": [],
48
+ "bos_token": "<s>",
49
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
50
+ "clean_up_tokenization_spaces": false,
51
+ "eos_token": "</s>",
52
+ "extra_special_tokens": {
53
+ "image_token": "<image>"
54
+ },
55
+ "image_token": "<image>",
56
+ "legacy": true,
57
+ "max_length": null,
58
+ "model_max_length": 8192,
59
+ "pad_to_multiple_of": null,
60
+ "pad_token": "</s>",
61
+ "pad_token_type_id": 0,
62
+ "padding_side": "left",
63
+ "processor_class": "LlavaNextProcessor",
64
+ "sp_model_kwargs": {},
65
+ "spaces_between_special_tokens": false,
66
+ "tokenizer_class": "LlamaTokenizer",
67
+ "unk_token": "<unk>",
68
+ "use_default_system_prompt": false
69
+ }
checkpoint-150/trainer_state.json ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.24,
5
+ "eval_steps": 1000.0,
6
+ "global_step": 150,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.016,
13
+ "grad_norm": 0.05375732481479645,
14
+ "learning_rate": 0.0001,
15
+ "loss": 4.9168,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.032,
20
+ "grad_norm": 0.06290680170059204,
21
+ "learning_rate": 0.0001,
22
+ "loss": 4.7727,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.048,
27
+ "grad_norm": 0.18232201039791107,
28
+ "learning_rate": 0.0001,
29
+ "loss": 4.6199,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.064,
34
+ "grad_norm": 4.475333213806152,
35
+ "learning_rate": 0.0001,
36
+ "loss": 4.2628,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.08,
41
+ "grad_norm": 5.602807998657227,
42
+ "learning_rate": 0.0001,
43
+ "loss": 2.2105,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.096,
48
+ "grad_norm": 4.922974586486816,
49
+ "learning_rate": 0.0001,
50
+ "loss": 1.4091,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.112,
55
+ "grad_norm": 7.1347479820251465,
56
+ "learning_rate": 0.0001,
57
+ "loss": 0.85,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.128,
62
+ "grad_norm": 3.1461501121520996,
63
+ "learning_rate": 0.0001,
64
+ "loss": 0.6901,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.144,
69
+ "grad_norm": 1.2969322204589844,
70
+ "learning_rate": 0.0001,
71
+ "loss": 0.5742,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.16,
76
+ "grad_norm": 2.384674549102783,
77
+ "learning_rate": 0.0001,
78
+ "loss": 0.781,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.176,
83
+ "grad_norm": 1.1518051624298096,
84
+ "learning_rate": 0.0001,
85
+ "loss": 0.6573,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.192,
90
+ "grad_norm": 1.042501449584961,
91
+ "learning_rate": 0.0001,
92
+ "loss": 0.7151,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.208,
97
+ "grad_norm": 2.2350070476531982,
98
+ "learning_rate": 0.0001,
99
+ "loss": 0.6271,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.224,
104
+ "grad_norm": 29.857282638549805,
105
+ "learning_rate": 0.0001,
106
+ "loss": 1.2141,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.24,
111
+ "grad_norm": 1.7340813875198364,
112
+ "learning_rate": 0.0001,
113
+ "loss": 0.8102,
114
+ "step": 150
115
+ }
116
+ ],
117
+ "logging_steps": 10,
118
+ "max_steps": 150,
119
+ "num_input_tokens_seen": 0,
120
+ "num_train_epochs": 1,
121
+ "save_steps": 500,
122
+ "stateful_callbacks": {
123
+ "TrainerControl": {
124
+ "args": {
125
+ "should_epoch_stop": false,
126
+ "should_evaluate": false,
127
+ "should_log": false,
128
+ "should_save": true,
129
+ "should_training_stop": true
130
+ },
131
+ "attributes": {}
132
+ }
133
+ },
134
+ "total_flos": 5.484662633791488e+16,
135
+ "train_batch_size": 8,
136
+ "trial_name": null,
137
+ "trial_params": null
138
+ }
checkpoint-150/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b687191320ebcf3b23eba17022227dbbdb99144f49afde09c51ab32e4eacc1f2
3
+ size 6840
checkpoint-150/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)
config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llava-hf/llava-v1.6-mistral-7b-hf",
3
+ "architectures": [
4
+ "LlavaNextForConditionalGeneration"
5
+ ],
6
+ "ignore_index": -100,
7
+ "image_grid_pinpoints": [
8
+ [
9
+ 336,
10
+ 672
11
+ ],
12
+ [
13
+ 672,
14
+ 336
15
+ ],
16
+ [
17
+ 672,
18
+ 672
19
+ ],
20
+ [
21
+ 1008,
22
+ 336
23
+ ],
24
+ [
25
+ 336,
26
+ 1008
27
+ ]
28
+ ],
29
+ "image_seq_length": 576,
30
+ "image_token_index": 32000,
31
+ "model_type": "llava_next",
32
+ "projector_hidden_act": "gelu",
33
+ "text_config": {
34
+ "_name_or_path": "mistralai/Mistral-7B-Instruct-v0.2",
35
+ "architectures": [
36
+ "MistralForCausalLM"
37
+ ],
38
+ "intermediate_size": 14336,
39
+ "max_position_embeddings": 32768,
40
+ "model_type": "mistral",
41
+ "num_key_value_heads": 8,
42
+ "rms_norm_eps": 1e-05,
43
+ "rope_theta": 1000000.0,
44
+ "sliding_window": null,
45
+ "torch_dtype": "bfloat16",
46
+ "vocab_size": 32064
47
+ },
48
+ "tie_word_embeddings": false,
49
+ "torch_dtype": "bfloat16",
50
+ "transformers_version": "4.46.0",
51
+ "use_image_newline_parameter": true,
52
+ "vision_config": {
53
+ "hidden_size": 1024,
54
+ "image_size": 336,
55
+ "intermediate_size": 4096,
56
+ "model_type": "clip_vision_model",
57
+ "num_attention_heads": 16,
58
+ "num_hidden_layers": 24,
59
+ "patch_size": 14,
60
+ "projection_dim": 768,
61
+ "vocab_size": 32000
62
+ },
63
+ "vision_feature_layer": -2,
64
+ "vision_feature_select_strategy": "default",
65
+ "vocab_size": 32064
66
+ }
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "transformers_version": "4.46.0"
6
+ }
lorra_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "target_layers": "16",
3
+ "transform_layers": "14,15,16",
4
+ "lorra_alpha": 5.0,
5
+ "trainsets": null,
6
+ "valsets": null,
7
+ "full_layers": false
8
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "aspect_ratio_setting": "anyres",
3
+ "crop_size": {
4
+ "height": 336,
5
+ "width": 336
6
+ },
7
+ "do_center_crop": true,
8
+ "do_convert_rgb": true,
9
+ "do_normalize": true,
10
+ "do_pad": true,
11
+ "do_rescale": true,
12
+ "do_resize": true,
13
+ "image_grid_pinpoints": [
14
+ [
15
+ 336,
16
+ 672
17
+ ],
18
+ [
19
+ 672,
20
+ 336
21
+ ],
22
+ [
23
+ 672,
24
+ 672
25
+ ],
26
+ [
27
+ 1008,
28
+ 336
29
+ ],
30
+ [
31
+ 336,
32
+ 1008
33
+ ]
34
+ ],
35
+ "image_mean": [
36
+ 0.48145466,
37
+ 0.4578275,
38
+ 0.40821073
39
+ ],
40
+ "image_processor_type": "LlavaNextImageProcessor",
41
+ "image_std": [
42
+ 0.26862954,
43
+ 0.26130258,
44
+ 0.27577711
45
+ ],
46
+ "processor_class": "LlavaNextProcessor",
47
+ "resample": 3,
48
+ "rescale_factor": 0.00392156862745098,
49
+ "size": {
50
+ "shortest_edge": 336
51
+ }
52
+ }
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "image_token": "<image>",
3
+ "patch_size": 14,
4
+ "processor_class": "LlavaNextProcessor",
5
+ "vision_feature_select_strategy": "default"
6
+ }
pytorch_model-00001-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7447bdce00f6c94829b02860b0b1f642f10ca1ba64f8dae193d21a200540b6f
3
+ size 3080245101
pytorch_model-00002-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9b6ca3ea95f075e46c42c0bb2515928e5c75f67cb5c969cd5c04667c7c7ac30
3
+ size 4915941642
pytorch_model-00003-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c90dda441fde80d55b33378941ceaa0742530218ddae4fa767d1d384fbc5c63
3
+ size 4915941642
pytorch_model-00004-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e588585a2e0d5cf8a9062b99da12da2ff9134a6740d89fd24ad680dfa4b84342
3
+ size 2298601226
pytorch_model-00005-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c9eee75efce5195c70fda1aa47a0fd6030b23f07679a8922b24765fa400281f
3
+ size 262681110
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,829 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 21676855296
4
+ },
5
+ "weight_map": {
6
+ "image_newline": "pytorch_model-00001-of-00005.bin",
7
+ "language_model.lm_head.weight": "pytorch_model-00005-of-00005.bin",
8
+ "language_model.model.embed_tokens.weight": "pytorch_model-00001-of-00005.bin",
9
+ "language_model.model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
10
+ "language_model.model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
11
+ "language_model.model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
12
+ "language_model.model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
13
+ "language_model.model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
14
+ "language_model.model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
15
+ "language_model.model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
16
+ "language_model.model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
17
+ "language_model.model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
18
+ "language_model.model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
19
+ "language_model.model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
20
+ "language_model.model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
21
+ "language_model.model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
22
+ "language_model.model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
23
+ "language_model.model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
24
+ "language_model.model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
25
+ "language_model.model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
26
+ "language_model.model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
27
+ "language_model.model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
28
+ "language_model.model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
29
+ "language_model.model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
30
+ "language_model.model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
31
+ "language_model.model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
32
+ "language_model.model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
33
+ "language_model.model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
34
+ "language_model.model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
35
+ "language_model.model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
36
+ "language_model.model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
37
+ "language_model.model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
38
+ "language_model.model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
39
+ "language_model.model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
40
+ "language_model.model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
41
+ "language_model.model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
42
+ "language_model.model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
43
+ "language_model.model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
44
+ "language_model.model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
45
+ "language_model.model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
46
+ "language_model.model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
47
+ "language_model.model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
48
+ "language_model.model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
49
+ "language_model.model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
50
+ "language_model.model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
51
+ "language_model.model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
52
+ "language_model.model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
53
+ "language_model.model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
54
+ "language_model.model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
55
+ "language_model.model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
56
+ "language_model.model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
57
+ "language_model.model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
58
+ "language_model.model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
59
+ "language_model.model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
60
+ "language_model.model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
61
+ "language_model.model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
62
+ "language_model.model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
63
+ "language_model.model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
64
+ "language_model.model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
65
+ "language_model.model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
66
+ "language_model.model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
67
+ "language_model.model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
68
+ "language_model.model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
69
+ "language_model.model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
70
+ "language_model.model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
71
+ "language_model.model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
72
+ "language_model.model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
73
+ "language_model.model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
74
+ "language_model.model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
75
+ "language_model.model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
76
+ "language_model.model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
77
+ "language_model.model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
78
+ "language_model.model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
79
+ "language_model.model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
80
+ "language_model.model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
81
+ "language_model.model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
82
+ "language_model.model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
83
+ "language_model.model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
84
+ "language_model.model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
85
+ "language_model.model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
86
+ "language_model.model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
87
+ "language_model.model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
88
+ "language_model.model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
89
+ "language_model.model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
90
+ "language_model.model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
91
+ "language_model.model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
92
+ "language_model.model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
93
+ "language_model.model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
94
+ "language_model.model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
95
+ "language_model.model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
96
+ "language_model.model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
97
+ "language_model.model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
98
+ "language_model.model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
99
+ "language_model.model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
100
+ "language_model.model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
101
+ "language_model.model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
102
+ "language_model.model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
103
+ "language_model.model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
104
+ "language_model.model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
105
+ "language_model.model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
106
+ "language_model.model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
107
+ "language_model.model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
108
+ "language_model.model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
109
+ "language_model.model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
110
+ "language_model.model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
111
+ "language_model.model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
112
+ "language_model.model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
113
+ "language_model.model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
114
+ "language_model.model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
115
+ "language_model.model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
116
+ "language_model.model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
117
+ "language_model.model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
118
+ "language_model.model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
119
+ "language_model.model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
120
+ "language_model.model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
121
+ "language_model.model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
122
+ "language_model.model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
123
+ "language_model.model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
124
+ "language_model.model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
125
+ "language_model.model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
126
+ "language_model.model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
127
+ "language_model.model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
128
+ "language_model.model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
129
+ "language_model.model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
130
+ "language_model.model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
131
+ "language_model.model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00005.bin",
132
+ "language_model.model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00005.bin",
133
+ "language_model.model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00005.bin",
134
+ "language_model.model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00005.bin",
135
+ "language_model.model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
136
+ "language_model.model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
137
+ "language_model.model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
138
+ "language_model.model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
139
+ "language_model.model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
140
+ "language_model.model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
141
+ "language_model.model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
142
+ "language_model.model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
143
+ "language_model.model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
144
+ "language_model.model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
145
+ "language_model.model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
146
+ "language_model.model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
147
+ "language_model.model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
148
+ "language_model.model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
149
+ "language_model.model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
150
+ "language_model.model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
151
+ "language_model.model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
152
+ "language_model.model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
153
+ "language_model.model.layers.23.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
154
+ "language_model.model.layers.23.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
155
+ "language_model.model.layers.23.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
156
+ "language_model.model.layers.23.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
157
+ "language_model.model.layers.23.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
158
+ "language_model.model.layers.23.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
159
+ "language_model.model.layers.23.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
160
+ "language_model.model.layers.23.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
161
+ "language_model.model.layers.23.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
162
+ "language_model.model.layers.24.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
163
+ "language_model.model.layers.24.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
164
+ "language_model.model.layers.24.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
165
+ "language_model.model.layers.24.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
166
+ "language_model.model.layers.24.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
167
+ "language_model.model.layers.24.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
168
+ "language_model.model.layers.24.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
169
+ "language_model.model.layers.24.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
170
+ "language_model.model.layers.24.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
171
+ "language_model.model.layers.25.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
172
+ "language_model.model.layers.25.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
173
+ "language_model.model.layers.25.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
174
+ "language_model.model.layers.25.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
175
+ "language_model.model.layers.25.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
176
+ "language_model.model.layers.25.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
177
+ "language_model.model.layers.25.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
178
+ "language_model.model.layers.25.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
179
+ "language_model.model.layers.25.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
180
+ "language_model.model.layers.26.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
181
+ "language_model.model.layers.26.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
182
+ "language_model.model.layers.26.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
183
+ "language_model.model.layers.26.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
184
+ "language_model.model.layers.26.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
185
+ "language_model.model.layers.26.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
186
+ "language_model.model.layers.26.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
187
+ "language_model.model.layers.26.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
188
+ "language_model.model.layers.26.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
189
+ "language_model.model.layers.27.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
190
+ "language_model.model.layers.27.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
191
+ "language_model.model.layers.27.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
192
+ "language_model.model.layers.27.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
193
+ "language_model.model.layers.27.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
194
+ "language_model.model.layers.27.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
195
+ "language_model.model.layers.27.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
196
+ "language_model.model.layers.27.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
197
+ "language_model.model.layers.27.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
198
+ "language_model.model.layers.28.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
199
+ "language_model.model.layers.28.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
200
+ "language_model.model.layers.28.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
201
+ "language_model.model.layers.28.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
202
+ "language_model.model.layers.28.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
203
+ "language_model.model.layers.28.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
204
+ "language_model.model.layers.28.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
205
+ "language_model.model.layers.28.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
206
+ "language_model.model.layers.28.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
207
+ "language_model.model.layers.29.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
208
+ "language_model.model.layers.29.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
209
+ "language_model.model.layers.29.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
210
+ "language_model.model.layers.29.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
211
+ "language_model.model.layers.29.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
212
+ "language_model.model.layers.29.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
213
+ "language_model.model.layers.29.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
214
+ "language_model.model.layers.29.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
215
+ "language_model.model.layers.29.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
216
+ "language_model.model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
217
+ "language_model.model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
218
+ "language_model.model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
219
+ "language_model.model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
220
+ "language_model.model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
221
+ "language_model.model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
222
+ "language_model.model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
223
+ "language_model.model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
224
+ "language_model.model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
225
+ "language_model.model.layers.30.input_layernorm.weight": "pytorch_model-00003-of-00005.bin",
226
+ "language_model.model.layers.30.mlp.down_proj.weight": "pytorch_model-00003-of-00005.bin",
227
+ "language_model.model.layers.30.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
228
+ "language_model.model.layers.30.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
229
+ "language_model.model.layers.30.post_attention_layernorm.weight": "pytorch_model-00003-of-00005.bin",
230
+ "language_model.model.layers.30.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
231
+ "language_model.model.layers.30.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
232
+ "language_model.model.layers.30.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
233
+ "language_model.model.layers.30.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
234
+ "language_model.model.layers.31.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
235
+ "language_model.model.layers.31.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
236
+ "language_model.model.layers.31.mlp.gate_proj.weight": "pytorch_model-00003-of-00005.bin",
237
+ "language_model.model.layers.31.mlp.up_proj.weight": "pytorch_model-00003-of-00005.bin",
238
+ "language_model.model.layers.31.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
239
+ "language_model.model.layers.31.self_attn.k_proj.weight": "pytorch_model-00003-of-00005.bin",
240
+ "language_model.model.layers.31.self_attn.o_proj.weight": "pytorch_model-00003-of-00005.bin",
241
+ "language_model.model.layers.31.self_attn.q_proj.weight": "pytorch_model-00003-of-00005.bin",
242
+ "language_model.model.layers.31.self_attn.v_proj.weight": "pytorch_model-00003-of-00005.bin",
243
+ "language_model.model.layers.32.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
244
+ "language_model.model.layers.32.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
245
+ "language_model.model.layers.32.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
246
+ "language_model.model.layers.32.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
247
+ "language_model.model.layers.32.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
248
+ "language_model.model.layers.32.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
249
+ "language_model.model.layers.32.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
250
+ "language_model.model.layers.32.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
251
+ "language_model.model.layers.32.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
252
+ "language_model.model.layers.33.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
253
+ "language_model.model.layers.33.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
254
+ "language_model.model.layers.33.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
255
+ "language_model.model.layers.33.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
256
+ "language_model.model.layers.33.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
257
+ "language_model.model.layers.33.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
258
+ "language_model.model.layers.33.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
259
+ "language_model.model.layers.33.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
260
+ "language_model.model.layers.33.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
261
+ "language_model.model.layers.34.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
262
+ "language_model.model.layers.34.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
263
+ "language_model.model.layers.34.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
264
+ "language_model.model.layers.34.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
265
+ "language_model.model.layers.34.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
266
+ "language_model.model.layers.34.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
267
+ "language_model.model.layers.34.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
268
+ "language_model.model.layers.34.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
269
+ "language_model.model.layers.34.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
270
+ "language_model.model.layers.35.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
271
+ "language_model.model.layers.35.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
272
+ "language_model.model.layers.35.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
273
+ "language_model.model.layers.35.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
274
+ "language_model.model.layers.35.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
275
+ "language_model.model.layers.35.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
276
+ "language_model.model.layers.35.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
277
+ "language_model.model.layers.35.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
278
+ "language_model.model.layers.35.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
279
+ "language_model.model.layers.36.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
280
+ "language_model.model.layers.36.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
281
+ "language_model.model.layers.36.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
282
+ "language_model.model.layers.36.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
283
+ "language_model.model.layers.36.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
284
+ "language_model.model.layers.36.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
285
+ "language_model.model.layers.36.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
286
+ "language_model.model.layers.36.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
287
+ "language_model.model.layers.36.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
288
+ "language_model.model.layers.37.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
289
+ "language_model.model.layers.37.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
290
+ "language_model.model.layers.37.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
291
+ "language_model.model.layers.37.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
292
+ "language_model.model.layers.37.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
293
+ "language_model.model.layers.37.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
294
+ "language_model.model.layers.37.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
295
+ "language_model.model.layers.37.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
296
+ "language_model.model.layers.37.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
297
+ "language_model.model.layers.38.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
298
+ "language_model.model.layers.38.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
299
+ "language_model.model.layers.38.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
300
+ "language_model.model.layers.38.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
301
+ "language_model.model.layers.38.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
302
+ "language_model.model.layers.38.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
303
+ "language_model.model.layers.38.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
304
+ "language_model.model.layers.38.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
305
+ "language_model.model.layers.38.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
306
+ "language_model.model.layers.39.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
307
+ "language_model.model.layers.39.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
308
+ "language_model.model.layers.39.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
309
+ "language_model.model.layers.39.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
310
+ "language_model.model.layers.39.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
311
+ "language_model.model.layers.39.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
312
+ "language_model.model.layers.39.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
313
+ "language_model.model.layers.39.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
314
+ "language_model.model.layers.39.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
315
+ "language_model.model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
316
+ "language_model.model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
317
+ "language_model.model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
318
+ "language_model.model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
319
+ "language_model.model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
320
+ "language_model.model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
321
+ "language_model.model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
322
+ "language_model.model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
323
+ "language_model.model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
324
+ "language_model.model.layers.40.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
325
+ "language_model.model.layers.40.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
326
+ "language_model.model.layers.40.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
327
+ "language_model.model.layers.40.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
328
+ "language_model.model.layers.40.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
329
+ "language_model.model.layers.40.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
330
+ "language_model.model.layers.40.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
331
+ "language_model.model.layers.40.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
332
+ "language_model.model.layers.40.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
333
+ "language_model.model.layers.41.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
334
+ "language_model.model.layers.41.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
335
+ "language_model.model.layers.41.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
336
+ "language_model.model.layers.41.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
337
+ "language_model.model.layers.41.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
338
+ "language_model.model.layers.41.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
339
+ "language_model.model.layers.41.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
340
+ "language_model.model.layers.41.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
341
+ "language_model.model.layers.41.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
342
+ "language_model.model.layers.42.input_layernorm.weight": "pytorch_model-00004-of-00005.bin",
343
+ "language_model.model.layers.42.mlp.down_proj.weight": "pytorch_model-00004-of-00005.bin",
344
+ "language_model.model.layers.42.mlp.gate_proj.weight": "pytorch_model-00004-of-00005.bin",
345
+ "language_model.model.layers.42.mlp.up_proj.weight": "pytorch_model-00004-of-00005.bin",
346
+ "language_model.model.layers.42.post_attention_layernorm.weight": "pytorch_model-00004-of-00005.bin",
347
+ "language_model.model.layers.42.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
348
+ "language_model.model.layers.42.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
349
+ "language_model.model.layers.42.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
350
+ "language_model.model.layers.42.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
351
+ "language_model.model.layers.43.input_layernorm.weight": "pytorch_model-00005-of-00005.bin",
352
+ "language_model.model.layers.43.mlp.down_proj.weight": "pytorch_model-00005-of-00005.bin",
353
+ "language_model.model.layers.43.mlp.gate_proj.weight": "pytorch_model-00005-of-00005.bin",
354
+ "language_model.model.layers.43.mlp.up_proj.weight": "pytorch_model-00005-of-00005.bin",
355
+ "language_model.model.layers.43.post_attention_layernorm.weight": "pytorch_model-00005-of-00005.bin",
356
+ "language_model.model.layers.43.self_attn.k_proj.weight": "pytorch_model-00004-of-00005.bin",
357
+ "language_model.model.layers.43.self_attn.o_proj.weight": "pytorch_model-00004-of-00005.bin",
358
+ "language_model.model.layers.43.self_attn.q_proj.weight": "pytorch_model-00004-of-00005.bin",
359
+ "language_model.model.layers.43.self_attn.v_proj.weight": "pytorch_model-00004-of-00005.bin",
360
+ "language_model.model.layers.44.input_layernorm.weight": "pytorch_model-00005-of-00005.bin",
361
+ "language_model.model.layers.44.mlp.down_proj.weight": "pytorch_model-00005-of-00005.bin",
362
+ "language_model.model.layers.44.mlp.gate_proj.weight": "pytorch_model-00005-of-00005.bin",
363
+ "language_model.model.layers.44.mlp.up_proj.weight": "pytorch_model-00005-of-00005.bin",
364
+ "language_model.model.layers.44.post_attention_layernorm.weight": "pytorch_model-00005-of-00005.bin",
365
+ "language_model.model.layers.44.self_attn.k_proj.weight": "pytorch_model-00005-of-00005.bin",
366
+ "language_model.model.layers.44.self_attn.o_proj.weight": "pytorch_model-00005-of-00005.bin",
367
+ "language_model.model.layers.44.self_attn.q_proj.weight": "pytorch_model-00005-of-00005.bin",
368
+ "language_model.model.layers.44.self_attn.v_proj.weight": "pytorch_model-00005-of-00005.bin",
369
+ "language_model.model.layers.45.input_layernorm.weight": "pytorch_model-00005-of-00005.bin",
370
+ "language_model.model.layers.45.mlp.down_proj.weight": "pytorch_model-00005-of-00005.bin",
371
+ "language_model.model.layers.45.mlp.gate_proj.weight": "pytorch_model-00005-of-00005.bin",
372
+ "language_model.model.layers.45.mlp.up_proj.weight": "pytorch_model-00005-of-00005.bin",
373
+ "language_model.model.layers.45.post_attention_layernorm.weight": "pytorch_model-00005-of-00005.bin",
374
+ "language_model.model.layers.45.self_attn.k_proj.weight": "pytorch_model-00005-of-00005.bin",
375
+ "language_model.model.layers.45.self_attn.o_proj.weight": "pytorch_model-00005-of-00005.bin",
376
+ "language_model.model.layers.45.self_attn.q_proj.weight": "pytorch_model-00005-of-00005.bin",
377
+ "language_model.model.layers.45.self_attn.v_proj.weight": "pytorch_model-00005-of-00005.bin",
378
+ "language_model.model.layers.46.input_layernorm.weight": "pytorch_model-00005-of-00005.bin",
379
+ "language_model.model.layers.46.mlp.down_proj.weight": "pytorch_model-00005-of-00005.bin",
380
+ "language_model.model.layers.46.mlp.gate_proj.weight": "pytorch_model-00005-of-00005.bin",
381
+ "language_model.model.layers.46.mlp.up_proj.weight": "pytorch_model-00005-of-00005.bin",
382
+ "language_model.model.layers.46.post_attention_layernorm.weight": "pytorch_model-00005-of-00005.bin",
383
+ "language_model.model.layers.46.self_attn.k_proj.weight": "pytorch_model-00005-of-00005.bin",
384
+ "language_model.model.layers.46.self_attn.o_proj.weight": "pytorch_model-00005-of-00005.bin",
385
+ "language_model.model.layers.46.self_attn.q_proj.weight": "pytorch_model-00005-of-00005.bin",
386
+ "language_model.model.layers.46.self_attn.v_proj.weight": "pytorch_model-00005-of-00005.bin",
387
+ "language_model.model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
388
+ "language_model.model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
389
+ "language_model.model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
390
+ "language_model.model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
391
+ "language_model.model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
392
+ "language_model.model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
393
+ "language_model.model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
394
+ "language_model.model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
395
+ "language_model.model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
396
+ "language_model.model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
397
+ "language_model.model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
398
+ "language_model.model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
399
+ "language_model.model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
400
+ "language_model.model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
401
+ "language_model.model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
402
+ "language_model.model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
403
+ "language_model.model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
404
+ "language_model.model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
405
+ "language_model.model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
406
+ "language_model.model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
407
+ "language_model.model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
408
+ "language_model.model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
409
+ "language_model.model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
410
+ "language_model.model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
411
+ "language_model.model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
412
+ "language_model.model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
413
+ "language_model.model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
414
+ "language_model.model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00005.bin",
415
+ "language_model.model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00005.bin",
416
+ "language_model.model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00005.bin",
417
+ "language_model.model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00005.bin",
418
+ "language_model.model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00005.bin",
419
+ "language_model.model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
420
+ "language_model.model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
421
+ "language_model.model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
422
+ "language_model.model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
423
+ "language_model.model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00005.bin",
424
+ "language_model.model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00005.bin",
425
+ "language_model.model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00005.bin",
426
+ "language_model.model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00005.bin",
427
+ "language_model.model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00005.bin",
428
+ "language_model.model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
429
+ "language_model.model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00005.bin",
430
+ "language_model.model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
431
+ "language_model.model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
432
+ "language_model.model.norm.weight": "pytorch_model-00005-of-00005.bin",
433
+ "multi_modal_projector.linear_1.bias": "pytorch_model-00001-of-00005.bin",
434
+ "multi_modal_projector.linear_1.weight": "pytorch_model-00001-of-00005.bin",
435
+ "multi_modal_projector.linear_2.bias": "pytorch_model-00001-of-00005.bin",
436
+ "multi_modal_projector.linear_2.weight": "pytorch_model-00001-of-00005.bin",
437
+ "vision_tower.vision_model.embeddings.class_embedding": "pytorch_model-00001-of-00005.bin",
438
+ "vision_tower.vision_model.embeddings.patch_embedding.weight": "pytorch_model-00001-of-00005.bin",
439
+ "vision_tower.vision_model.embeddings.position_embedding.weight": "pytorch_model-00001-of-00005.bin",
440
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
441
+ "vision_tower.vision_model.encoder.layers.0.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
442
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
443
+ "vision_tower.vision_model.encoder.layers.0.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
444
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
445
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
446
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
447
+ "vision_tower.vision_model.encoder.layers.0.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
448
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
449
+ "vision_tower.vision_model.encoder.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
450
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
451
+ "vision_tower.vision_model.encoder.layers.0.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
452
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
453
+ "vision_tower.vision_model.encoder.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
454
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
455
+ "vision_tower.vision_model.encoder.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
456
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
457
+ "vision_tower.vision_model.encoder.layers.1.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
458
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
459
+ "vision_tower.vision_model.encoder.layers.1.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
460
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
461
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
462
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
463
+ "vision_tower.vision_model.encoder.layers.1.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
464
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
465
+ "vision_tower.vision_model.encoder.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
466
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
467
+ "vision_tower.vision_model.encoder.layers.1.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
468
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
469
+ "vision_tower.vision_model.encoder.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
470
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
471
+ "vision_tower.vision_model.encoder.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
472
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
473
+ "vision_tower.vision_model.encoder.layers.10.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
474
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
475
+ "vision_tower.vision_model.encoder.layers.10.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
476
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
477
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
478
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
479
+ "vision_tower.vision_model.encoder.layers.10.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
480
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
481
+ "vision_tower.vision_model.encoder.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
482
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
483
+ "vision_tower.vision_model.encoder.layers.10.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
484
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
485
+ "vision_tower.vision_model.encoder.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
486
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
487
+ "vision_tower.vision_model.encoder.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
488
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
489
+ "vision_tower.vision_model.encoder.layers.11.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
490
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
491
+ "vision_tower.vision_model.encoder.layers.11.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
492
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
493
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
494
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
495
+ "vision_tower.vision_model.encoder.layers.11.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
496
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
497
+ "vision_tower.vision_model.encoder.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
498
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
499
+ "vision_tower.vision_model.encoder.layers.11.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
500
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
501
+ "vision_tower.vision_model.encoder.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
502
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
503
+ "vision_tower.vision_model.encoder.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
504
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
505
+ "vision_tower.vision_model.encoder.layers.12.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
506
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
507
+ "vision_tower.vision_model.encoder.layers.12.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
508
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
509
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
510
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
511
+ "vision_tower.vision_model.encoder.layers.12.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
512
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
513
+ "vision_tower.vision_model.encoder.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
514
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
515
+ "vision_tower.vision_model.encoder.layers.12.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
516
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
517
+ "vision_tower.vision_model.encoder.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
518
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
519
+ "vision_tower.vision_model.encoder.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
520
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
521
+ "vision_tower.vision_model.encoder.layers.13.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
522
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
523
+ "vision_tower.vision_model.encoder.layers.13.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
524
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
525
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
526
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
527
+ "vision_tower.vision_model.encoder.layers.13.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
528
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
529
+ "vision_tower.vision_model.encoder.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
530
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
531
+ "vision_tower.vision_model.encoder.layers.13.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
532
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
533
+ "vision_tower.vision_model.encoder.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
534
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
535
+ "vision_tower.vision_model.encoder.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
536
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
537
+ "vision_tower.vision_model.encoder.layers.14.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
538
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
539
+ "vision_tower.vision_model.encoder.layers.14.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
540
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
541
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
542
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
543
+ "vision_tower.vision_model.encoder.layers.14.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
544
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
545
+ "vision_tower.vision_model.encoder.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
546
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
547
+ "vision_tower.vision_model.encoder.layers.14.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
548
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
549
+ "vision_tower.vision_model.encoder.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
550
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
551
+ "vision_tower.vision_model.encoder.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
552
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
553
+ "vision_tower.vision_model.encoder.layers.15.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
554
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
555
+ "vision_tower.vision_model.encoder.layers.15.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
556
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
557
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
558
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
559
+ "vision_tower.vision_model.encoder.layers.15.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
560
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
561
+ "vision_tower.vision_model.encoder.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
562
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
563
+ "vision_tower.vision_model.encoder.layers.15.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
564
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
565
+ "vision_tower.vision_model.encoder.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
566
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
567
+ "vision_tower.vision_model.encoder.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
568
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
569
+ "vision_tower.vision_model.encoder.layers.16.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
570
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
571
+ "vision_tower.vision_model.encoder.layers.16.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
572
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
573
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
574
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
575
+ "vision_tower.vision_model.encoder.layers.16.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
576
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
577
+ "vision_tower.vision_model.encoder.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
578
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
579
+ "vision_tower.vision_model.encoder.layers.16.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
580
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
581
+ "vision_tower.vision_model.encoder.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
582
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
583
+ "vision_tower.vision_model.encoder.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
584
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
585
+ "vision_tower.vision_model.encoder.layers.17.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
586
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
587
+ "vision_tower.vision_model.encoder.layers.17.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
588
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
589
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
590
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
591
+ "vision_tower.vision_model.encoder.layers.17.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
592
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
593
+ "vision_tower.vision_model.encoder.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
594
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
595
+ "vision_tower.vision_model.encoder.layers.17.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
596
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
597
+ "vision_tower.vision_model.encoder.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
598
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
599
+ "vision_tower.vision_model.encoder.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
600
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
601
+ "vision_tower.vision_model.encoder.layers.18.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
602
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
603
+ "vision_tower.vision_model.encoder.layers.18.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
604
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
605
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
606
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
607
+ "vision_tower.vision_model.encoder.layers.18.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
608
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
609
+ "vision_tower.vision_model.encoder.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
610
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
611
+ "vision_tower.vision_model.encoder.layers.18.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
612
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
613
+ "vision_tower.vision_model.encoder.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
614
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
615
+ "vision_tower.vision_model.encoder.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
616
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
617
+ "vision_tower.vision_model.encoder.layers.19.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
618
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
619
+ "vision_tower.vision_model.encoder.layers.19.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
620
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
621
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
622
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
623
+ "vision_tower.vision_model.encoder.layers.19.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
624
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
625
+ "vision_tower.vision_model.encoder.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
626
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
627
+ "vision_tower.vision_model.encoder.layers.19.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
628
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
629
+ "vision_tower.vision_model.encoder.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
630
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
631
+ "vision_tower.vision_model.encoder.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
632
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
633
+ "vision_tower.vision_model.encoder.layers.2.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
634
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
635
+ "vision_tower.vision_model.encoder.layers.2.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
636
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
637
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
638
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
639
+ "vision_tower.vision_model.encoder.layers.2.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
640
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
641
+ "vision_tower.vision_model.encoder.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
642
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
643
+ "vision_tower.vision_model.encoder.layers.2.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
644
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
645
+ "vision_tower.vision_model.encoder.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
646
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
647
+ "vision_tower.vision_model.encoder.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
648
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
649
+ "vision_tower.vision_model.encoder.layers.20.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
650
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
651
+ "vision_tower.vision_model.encoder.layers.20.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
652
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
653
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
654
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
655
+ "vision_tower.vision_model.encoder.layers.20.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
656
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
657
+ "vision_tower.vision_model.encoder.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
658
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
659
+ "vision_tower.vision_model.encoder.layers.20.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
660
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
661
+ "vision_tower.vision_model.encoder.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
662
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
663
+ "vision_tower.vision_model.encoder.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
664
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
665
+ "vision_tower.vision_model.encoder.layers.21.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
666
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
667
+ "vision_tower.vision_model.encoder.layers.21.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
668
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
669
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
670
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
671
+ "vision_tower.vision_model.encoder.layers.21.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
672
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
673
+ "vision_tower.vision_model.encoder.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
674
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
675
+ "vision_tower.vision_model.encoder.layers.21.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
676
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
677
+ "vision_tower.vision_model.encoder.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
678
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
679
+ "vision_tower.vision_model.encoder.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
680
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
681
+ "vision_tower.vision_model.encoder.layers.22.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
682
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
683
+ "vision_tower.vision_model.encoder.layers.22.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
684
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
685
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
686
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
687
+ "vision_tower.vision_model.encoder.layers.22.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
688
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
689
+ "vision_tower.vision_model.encoder.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
690
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
691
+ "vision_tower.vision_model.encoder.layers.22.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
692
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
693
+ "vision_tower.vision_model.encoder.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
694
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
695
+ "vision_tower.vision_model.encoder.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
696
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
697
+ "vision_tower.vision_model.encoder.layers.23.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
698
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
699
+ "vision_tower.vision_model.encoder.layers.23.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
700
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
701
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
702
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
703
+ "vision_tower.vision_model.encoder.layers.23.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
704
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
705
+ "vision_tower.vision_model.encoder.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
706
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
707
+ "vision_tower.vision_model.encoder.layers.23.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
708
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
709
+ "vision_tower.vision_model.encoder.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
710
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
711
+ "vision_tower.vision_model.encoder.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
712
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
713
+ "vision_tower.vision_model.encoder.layers.3.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
714
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
715
+ "vision_tower.vision_model.encoder.layers.3.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
716
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
717
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
718
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
719
+ "vision_tower.vision_model.encoder.layers.3.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
720
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
721
+ "vision_tower.vision_model.encoder.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
722
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
723
+ "vision_tower.vision_model.encoder.layers.3.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
724
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
725
+ "vision_tower.vision_model.encoder.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
726
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
727
+ "vision_tower.vision_model.encoder.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
728
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
729
+ "vision_tower.vision_model.encoder.layers.4.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
730
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
731
+ "vision_tower.vision_model.encoder.layers.4.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
732
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
733
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
734
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
735
+ "vision_tower.vision_model.encoder.layers.4.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
736
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
737
+ "vision_tower.vision_model.encoder.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
738
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
739
+ "vision_tower.vision_model.encoder.layers.4.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
740
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
741
+ "vision_tower.vision_model.encoder.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
742
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
743
+ "vision_tower.vision_model.encoder.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
744
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
745
+ "vision_tower.vision_model.encoder.layers.5.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
746
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
747
+ "vision_tower.vision_model.encoder.layers.5.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
748
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
749
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
750
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
751
+ "vision_tower.vision_model.encoder.layers.5.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
752
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
753
+ "vision_tower.vision_model.encoder.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
754
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
755
+ "vision_tower.vision_model.encoder.layers.5.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
756
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
757
+ "vision_tower.vision_model.encoder.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
758
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
759
+ "vision_tower.vision_model.encoder.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
760
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
761
+ "vision_tower.vision_model.encoder.layers.6.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
762
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
763
+ "vision_tower.vision_model.encoder.layers.6.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
764
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
765
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
766
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
767
+ "vision_tower.vision_model.encoder.layers.6.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
768
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
769
+ "vision_tower.vision_model.encoder.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
770
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
771
+ "vision_tower.vision_model.encoder.layers.6.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
772
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
773
+ "vision_tower.vision_model.encoder.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
774
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
775
+ "vision_tower.vision_model.encoder.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
776
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
777
+ "vision_tower.vision_model.encoder.layers.7.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
778
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
779
+ "vision_tower.vision_model.encoder.layers.7.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
780
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
781
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
782
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
783
+ "vision_tower.vision_model.encoder.layers.7.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
784
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
785
+ "vision_tower.vision_model.encoder.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
786
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
787
+ "vision_tower.vision_model.encoder.layers.7.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
788
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
789
+ "vision_tower.vision_model.encoder.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
790
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
791
+ "vision_tower.vision_model.encoder.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
792
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
793
+ "vision_tower.vision_model.encoder.layers.8.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
794
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
795
+ "vision_tower.vision_model.encoder.layers.8.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
796
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
797
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
798
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
799
+ "vision_tower.vision_model.encoder.layers.8.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
800
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
801
+ "vision_tower.vision_model.encoder.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
802
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
803
+ "vision_tower.vision_model.encoder.layers.8.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
804
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
805
+ "vision_tower.vision_model.encoder.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
806
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
807
+ "vision_tower.vision_model.encoder.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
808
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.bias": "pytorch_model-00001-of-00005.bin",
809
+ "vision_tower.vision_model.encoder.layers.9.layer_norm1.weight": "pytorch_model-00001-of-00005.bin",
810
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.bias": "pytorch_model-00001-of-00005.bin",
811
+ "vision_tower.vision_model.encoder.layers.9.layer_norm2.weight": "pytorch_model-00001-of-00005.bin",
812
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.bias": "pytorch_model-00001-of-00005.bin",
813
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc1.weight": "pytorch_model-00001-of-00005.bin",
814
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.bias": "pytorch_model-00001-of-00005.bin",
815
+ "vision_tower.vision_model.encoder.layers.9.mlp.fc2.weight": "pytorch_model-00001-of-00005.bin",
816
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.bias": "pytorch_model-00001-of-00005.bin",
817
+ "vision_tower.vision_model.encoder.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00005.bin",
818
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.bias": "pytorch_model-00001-of-00005.bin",
819
+ "vision_tower.vision_model.encoder.layers.9.self_attn.out_proj.weight": "pytorch_model-00001-of-00005.bin",
820
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.bias": "pytorch_model-00001-of-00005.bin",
821
+ "vision_tower.vision_model.encoder.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00005.bin",
822
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.bias": "pytorch_model-00001-of-00005.bin",
823
+ "vision_tower.vision_model.encoder.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00005.bin",
824
+ "vision_tower.vision_model.post_layernorm.bias": "pytorch_model-00001-of-00005.bin",
825
+ "vision_tower.vision_model.post_layernorm.weight": "pytorch_model-00001-of-00005.bin",
826
+ "vision_tower.vision_model.pre_layrnorm.bias": "pytorch_model-00001-of-00005.bin",
827
+ "vision_tower.vision_model.pre_layrnorm.weight": "pytorch_model-00001-of-00005.bin"
828
+ }
829
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<image>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<pad>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ }
46
+ },
47
+ "additional_special_tokens": [],
48
+ "bos_token": "<s>",
49
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + message['content'] + eos_token}}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
50
+ "clean_up_tokenization_spaces": false,
51
+ "eos_token": "</s>",
52
+ "extra_special_tokens": {
53
+ "image_token": "<image>"
54
+ },
55
+ "image_token": "<image>",
56
+ "legacy": true,
57
+ "max_length": null,
58
+ "model_max_length": 8192,
59
+ "pad_to_multiple_of": null,
60
+ "pad_token": "</s>",
61
+ "pad_token_type_id": 0,
62
+ "padding_side": "left",
63
+ "processor_class": "LlavaNextProcessor",
64
+ "sp_model_kwargs": {},
65
+ "spaces_between_special_tokens": false,
66
+ "tokenizer_class": "LlamaTokenizer",
67
+ "unk_token": "<unk>",
68
+ "use_default_system_prompt": false
69
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b687191320ebcf3b23eba17022227dbbdb99144f49afde09c51ab32e4eacc1f2
3
+ size 6840