File size: 3,402 Bytes
aefbc6c
3c43540
aefbc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c43540
b313982
aefbc6c
 
 
 
 
 
 
 
 
3c43540
 
 
 
 
 
aefbc6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c43540
 
 
 
 
aefbc6c
 
 
 
3c43540
 
 
97901c4
 
 
 
ecc651b
97901c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc651b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
library_name: transformers
license: apache-2.0
base_model: google/flan-t5-base
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: flan-t5-base-samsum
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: samsum
      type: samsum
      config: samsum
      split: test
      args: samsum
    metrics:
    - name: Rouge1
      type: rouge
      value: 47.355
pipeline_tag: summarization
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-base-samsum

This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3736
- Rouge1: 47.355
- Rouge2: 23.7601
- Rougel: 39.8403
- Rougelsum: 43.4718
- Gen Len: 17.1575

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.3641        | 1.0   | 921  | 1.3780          | 47.4054 | 23.6308 | 39.8273 | 43.3697   | 17.3004 |
| 1.3074        | 2.0   | 1842 | 1.3736          | 47.355  | 23.7601 | 39.8403 | 43.4718   | 17.1575 |
| 1.2592        | 3.0   | 2763 | 1.3740          | 47.2208 | 23.4972 | 39.7293 | 43.2546   | 17.2320 |
| 1.2232        | 4.0   | 3684 | 1.3794          | 47.9156 | 24.2451 | 40.2628 | 43.9122   | 17.4017 |
| 1.2042        | 5.0   | 4605 | 1.3780          | 47.8982 | 24.1707 | 40.2955 | 43.8939   | 17.3712 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 3.0.0
- Tokenizers 0.19.1


### How to use
```py
from transformers import pipeline

pipe = pipeline("summarization", model="sharmax-vikas/flan-t5-base-samsum")

res = pipe('''dialogue: 
Margaret: Hi, in December I'd like to meet on 4th and 11th around 10:00 or 11:00. 
Evans: Hi, 4th - we can meet at 10:00.
Evans: And 11th - at 11:00. 
Margaret: Okey. And what about 18th?
Evans: I'm not sure about 18th. 
Evans: I might not be in town. 
Margaret: Okey, so we'll see. 
Evans: Yes. And I'll let you know next week. 
Margaret: If it's not 18th, maybe we could meet on 17th?
Evans: If I go away, I won't also be 17th.
Margaret: Okey, I get it. 
Evans: But we could meet 14th, if you like?
Margaret: Hm, I'm not sure whether I'm avaliable. 
Evans: So let's set these dates later, ok?
Margaret: Okey and we see each other 4th 10:00. 
Evans: Yes!''')

print(f"flan-t5-base summary:\n{res[0]['summary_text']}")


#output : flan-t5-base summary:
Margaret and Evans will meet on the 4th and 11th of December. They will meet at 10:00 on the 18th and at 11:00 on the 17th. If it's not 18th, they can meet on 17th or 14th.


```