Josh Cole
commited on
Commit
·
fea66a8
1
Parent(s):
a363672
update model
Browse files- Generate.ipynb +33 -37
- pytorch_model.bin +1 -1
- training_args.bin +2 -2
- vocab.json +1 -1
Generate.ipynb
CHANGED
@@ -9,7 +9,7 @@
|
|
9 |
{
|
10 |
"data": {
|
11 |
"application/vnd.jupyter.widget-view+json": {
|
12 |
-
"model_id": "
|
13 |
"version_major": 2,
|
14 |
"version_minor": 0
|
15 |
},
|
@@ -28,7 +28,7 @@
|
|
28 |
},
|
29 |
{
|
30 |
"cell_type": "code",
|
31 |
-
"execution_count":
|
32 |
"id": "38bdf299-f60d-43ea-9230-df1be861e406",
|
33 |
"metadata": {},
|
34 |
"outputs": [
|
@@ -43,7 +43,7 @@
|
|
43 |
{
|
44 |
"data": {
|
45 |
"application/vnd.jupyter.widget-view+json": {
|
46 |
-
"model_id": "
|
47 |
"version_major": 2,
|
48 |
"version_minor": 0
|
49 |
},
|
@@ -62,14 +62,14 @@
|
|
62 |
},
|
63 |
{
|
64 |
"cell_type": "code",
|
65 |
-
"execution_count":
|
66 |
"id": "75b32151-eb53-4476-8c1f-7e6da72e173e",
|
67 |
"metadata": {},
|
68 |
"outputs": [
|
69 |
{
|
70 |
"data": {
|
71 |
"application/vnd.jupyter.widget-view+json": {
|
72 |
-
"model_id": "
|
73 |
"version_major": 2,
|
74 |
"version_minor": 0
|
75 |
},
|
@@ -88,7 +88,7 @@
|
|
88 |
" return {\"vocab\": [vocab], \"all_text\": [all_text]}\n",
|
89 |
"\n",
|
90 |
"vocabs = ds.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=ds.column_names[\"train\"])\n",
|
91 |
-
"vocab_list = list(set(vocabs[\"train\"][\"vocab\"][0])
|
92 |
"vocab_dict = {v: k for k, v in enumerate(vocab_list)}\n",
|
93 |
"vocab_dict[\"|\"] = vocab_dict[\" \"]\n",
|
94 |
"del vocab_dict[\" \"]\n",
|
@@ -102,7 +102,7 @@
|
|
102 |
},
|
103 |
{
|
104 |
"cell_type": "code",
|
105 |
-
"execution_count":
|
106 |
"id": "d214872e-d4b1-4aa7-be07-8a1591961968",
|
107 |
"metadata": {},
|
108 |
"outputs": [],
|
@@ -111,14 +111,14 @@
|
|
111 |
"from transformers import Wav2Vec2FeatureExtractor\n",
|
112 |
"from transformers import Wav2Vec2Processor\n",
|
113 |
"\n",
|
114 |
-
"tokenizer = Wav2Vec2CTCTokenizer(\"./vocab.json\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\"
|
115 |
"feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)\n",
|
116 |
"processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)"
|
117 |
]
|
118 |
},
|
119 |
{
|
120 |
"cell_type": "code",
|
121 |
-
"execution_count":
|
122 |
"id": "e906c45f-6971-43c3-ad0a-b13363100bdf",
|
123 |
"metadata": {},
|
124 |
"outputs": [],
|
@@ -137,7 +137,7 @@
|
|
137 |
},
|
138 |
{
|
139 |
"cell_type": "code",
|
140 |
-
"execution_count":
|
141 |
"id": "8c083db6-eab5-4f25-9a08-eab50d2d30ac",
|
142 |
"metadata": {},
|
143 |
"outputs": [
|
@@ -151,7 +151,7 @@
|
|
151 |
{
|
152 |
"data": {
|
153 |
"application/vnd.jupyter.widget-view+json": {
|
154 |
-
"model_id": "
|
155 |
"version_major": 2,
|
156 |
"version_minor": 0
|
157 |
},
|
@@ -169,7 +169,7 @@
|
|
169 |
},
|
170 |
{
|
171 |
"cell_type": "code",
|
172 |
-
"execution_count":
|
173 |
"id": "50c9a6ad-9e79-4a1c-a5ce-6e1f73a96e4d",
|
174 |
"metadata": {},
|
175 |
"outputs": [],
|
@@ -242,7 +242,7 @@
|
|
242 |
},
|
243 |
{
|
244 |
"cell_type": "code",
|
245 |
-
"execution_count":
|
246 |
"id": "1025ffdf-cb83-4895-89ab-a98bc3fab642",
|
247 |
"metadata": {},
|
248 |
"outputs": [],
|
@@ -253,7 +253,7 @@
|
|
253 |
},
|
254 |
{
|
255 |
"cell_type": "code",
|
256 |
-
"execution_count":
|
257 |
"id": "71351cf4-6d00-40ae-89cc-cedb87073625",
|
258 |
"metadata": {},
|
259 |
"outputs": [
|
@@ -353,10 +353,10 @@
|
|
353 |
"}\n",
|
354 |
"\n",
|
355 |
"loading weights file https://huggingface.co/facebook/wav2vec2-base/resolve/main/pytorch_model.bin from cache at /home/sharpcoder/.cache/huggingface/transformers/ef45231897ce572a660ebc5a63d3702f1a6041c4c5fb78cbec330708531939b3.fcae05302a685f7904c551c8ea571e8bc2a2c4a1777ea81ad66e47f7883a650a\n",
|
356 |
-
"Some weights of the model checkpoint at facebook/wav2vec2-base were not used when initializing Wav2Vec2ForCTC: ['
|
357 |
"- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
358 |
"- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
359 |
-
"Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-base and are newly initialized: ['lm_head.
|
360 |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
361 |
]
|
362 |
}
|
@@ -391,11 +391,11 @@
|
|
391 |
"from transformers import Trainer\n",
|
392 |
"\n",
|
393 |
"training_args = TrainingArguments(\n",
|
394 |
-
" output_dir=\"
|
395 |
" group_by_length=True,\n",
|
396 |
" per_device_train_batch_size=8,\n",
|
397 |
" evaluation_strategy=\"steps\",\n",
|
398 |
-
" num_train_epochs=
|
399 |
" fp16=False,\n",
|
400 |
" gradient_checkpointing=True,\n",
|
401 |
" save_steps=500,\n",
|
@@ -431,17 +431,11 @@
|
|
431 |
"The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
432 |
"***** Running training *****\n",
|
433 |
" Num examples = 1\n",
|
434 |
-
" Num Epochs =
|
435 |
" Instantaneous batch size per device = 8\n",
|
436 |
" Total train batch size (w. parallel, distributed & accumulation) = 8\n",
|
437 |
" Gradient Accumulation steps = 1\n",
|
438 |
-
" Total optimization steps =
|
439 |
-
"/home/sharpcoder/.local/lib/python3.10/site-packages/transformers/feature_extraction_utils.py:158: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:210.)\n",
|
440 |
-
" tensor = as_tensor(value)\n",
|
441 |
-
"/home/sharpcoder/.local/lib/python3.10/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
|
442 |
-
" return (input_length - kernel_size) // stride + 1\n",
|
443 |
-
"/home/sharpcoder/.local/lib/python3.10/site-packages/torch/autocast_mode.py:162: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling\n",
|
444 |
-
" warnings.warn('User provided device_type of \\'cuda\\', but CUDA is not available. Disabling')\n"
|
445 |
]
|
446 |
},
|
447 |
{
|
@@ -450,8 +444,8 @@
|
|
450 |
"\n",
|
451 |
" <div>\n",
|
452 |
" \n",
|
453 |
-
" <progress value='
|
454 |
-
" [
|
455 |
" </div>\n",
|
456 |
" <table border=\"1\" class=\"dataframe\">\n",
|
457 |
" <thead>\n",
|
@@ -486,7 +480,7 @@
|
|
486 |
{
|
487 |
"data": {
|
488 |
"text/plain": [
|
489 |
-
"TrainOutput(global_step=
|
490 |
]
|
491 |
},
|
492 |
"execution_count": 46,
|
@@ -501,17 +495,17 @@
|
|
501 |
{
|
502 |
"cell_type": "code",
|
503 |
"execution_count": 47,
|
504 |
-
"id": "
|
505 |
"metadata": {},
|
506 |
"outputs": [
|
507 |
{
|
508 |
"name": "stderr",
|
509 |
"output_type": "stream",
|
510 |
"text": [
|
511 |
-
"Saving model checkpoint to
|
512 |
-
"Configuration saved in
|
513 |
-
"Model weights saved in
|
514 |
-
"Configuration saved in
|
515 |
]
|
516 |
},
|
517 |
{
|
@@ -521,18 +515,20 @@
|
|
521 |
"traceback": [
|
522 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
523 |
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
524 |
-
"Input \u001b[0;32mIn [47]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
525 |
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/transformers/trainer.py:2677\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_world_process_zero():\n\u001b[1;32m 2675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m-> 2677\u001b[0m git_head_commit_url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepo\u001b[49m\u001b[38;5;241m.\u001b[39mpush_to_hub(commit_message\u001b[38;5;241m=\u001b[39mcommit_message, blocking\u001b[38;5;241m=\u001b[39mblocking)\n\u001b[1;32m 2678\u001b[0m \u001b[38;5;66;03m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m 2679\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mshould_save:\n",
|
526 |
"\u001b[0;31mAttributeError\u001b[0m: 'Trainer' object has no attribute 'repo'"
|
527 |
]
|
528 |
}
|
529 |
],
|
530 |
-
"source": [
|
|
|
|
|
531 |
},
|
532 |
{
|
533 |
"cell_type": "code",
|
534 |
"execution_count": null,
|
535 |
-
"id": "
|
536 |
"metadata": {},
|
537 |
"outputs": [],
|
538 |
"source": []
|
|
|
9 |
{
|
10 |
"data": {
|
11 |
"application/vnd.jupyter.widget-view+json": {
|
12 |
+
"model_id": "7afc85b57ea24d31a2fdcc2b1f5c9ace",
|
13 |
"version_major": 2,
|
14 |
"version_minor": 0
|
15 |
},
|
|
|
28 |
},
|
29 |
{
|
30 |
"cell_type": "code",
|
31 |
+
"execution_count": 2,
|
32 |
"id": "38bdf299-f60d-43ea-9230-df1be861e406",
|
33 |
"metadata": {},
|
34 |
"outputs": [
|
|
|
43 |
{
|
44 |
"data": {
|
45 |
"application/vnd.jupyter.widget-view+json": {
|
46 |
+
"model_id": "18cae671f8fd4f9baac804c91fee03bf",
|
47 |
"version_major": 2,
|
48 |
"version_minor": 0
|
49 |
},
|
|
|
62 |
},
|
63 |
{
|
64 |
"cell_type": "code",
|
65 |
+
"execution_count": 22,
|
66 |
"id": "75b32151-eb53-4476-8c1f-7e6da72e173e",
|
67 |
"metadata": {},
|
68 |
"outputs": [
|
69 |
{
|
70 |
"data": {
|
71 |
"application/vnd.jupyter.widget-view+json": {
|
72 |
+
"model_id": "0611b2fa6cf740d6925d03cf3ba525a2",
|
73 |
"version_major": 2,
|
74 |
"version_minor": 0
|
75 |
},
|
|
|
88 |
" return {\"vocab\": [vocab], \"all_text\": [all_text]}\n",
|
89 |
"\n",
|
90 |
"vocabs = ds.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=ds.column_names[\"train\"])\n",
|
91 |
+
"vocab_list = list(set(vocabs[\"train\"][\"vocab\"][0]))\n",
|
92 |
"vocab_dict = {v: k for k, v in enumerate(vocab_list)}\n",
|
93 |
"vocab_dict[\"|\"] = vocab_dict[\" \"]\n",
|
94 |
"del vocab_dict[\" \"]\n",
|
|
|
102 |
},
|
103 |
{
|
104 |
"cell_type": "code",
|
105 |
+
"execution_count": 23,
|
106 |
"id": "d214872e-d4b1-4aa7-be07-8a1591961968",
|
107 |
"metadata": {},
|
108 |
"outputs": [],
|
|
|
111 |
"from transformers import Wav2Vec2FeatureExtractor\n",
|
112 |
"from transformers import Wav2Vec2Processor\n",
|
113 |
"\n",
|
114 |
+
"tokenizer = Wav2Vec2CTCTokenizer(\"./vocab.json\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\" \")\n",
|
115 |
"feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)\n",
|
116 |
"processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)"
|
117 |
]
|
118 |
},
|
119 |
{
|
120 |
"cell_type": "code",
|
121 |
+
"execution_count": 24,
|
122 |
"id": "e906c45f-6971-43c3-ad0a-b13363100bdf",
|
123 |
"metadata": {},
|
124 |
"outputs": [],
|
|
|
137 |
},
|
138 |
{
|
139 |
"cell_type": "code",
|
140 |
+
"execution_count": 25,
|
141 |
"id": "8c083db6-eab5-4f25-9a08-eab50d2d30ac",
|
142 |
"metadata": {},
|
143 |
"outputs": [
|
|
|
151 |
{
|
152 |
"data": {
|
153 |
"application/vnd.jupyter.widget-view+json": {
|
154 |
+
"model_id": "ae21f7b6a50241e4ab4dd2b5c7c5689c",
|
155 |
"version_major": 2,
|
156 |
"version_minor": 0
|
157 |
},
|
|
|
169 |
},
|
170 |
{
|
171 |
"cell_type": "code",
|
172 |
+
"execution_count": 26,
|
173 |
"id": "50c9a6ad-9e79-4a1c-a5ce-6e1f73a96e4d",
|
174 |
"metadata": {},
|
175 |
"outputs": [],
|
|
|
242 |
},
|
243 |
{
|
244 |
"cell_type": "code",
|
245 |
+
"execution_count": 27,
|
246 |
"id": "1025ffdf-cb83-4895-89ab-a98bc3fab642",
|
247 |
"metadata": {},
|
248 |
"outputs": [],
|
|
|
253 |
},
|
254 |
{
|
255 |
"cell_type": "code",
|
256 |
+
"execution_count": 35,
|
257 |
"id": "71351cf4-6d00-40ae-89cc-cedb87073625",
|
258 |
"metadata": {},
|
259 |
"outputs": [
|
|
|
353 |
"}\n",
|
354 |
"\n",
|
355 |
"loading weights file https://huggingface.co/facebook/wav2vec2-base/resolve/main/pytorch_model.bin from cache at /home/sharpcoder/.cache/huggingface/transformers/ef45231897ce572a660ebc5a63d3702f1a6041c4c5fb78cbec330708531939b3.fcae05302a685f7904c551c8ea571e8bc2a2c4a1777ea81ad66e47f7883a650a\n",
|
356 |
+
"Some weights of the model checkpoint at facebook/wav2vec2-base were not used when initializing Wav2Vec2ForCTC: ['project_hid.bias', 'quantizer.weight_proj.bias', 'project_q.weight', 'project_hid.weight', 'quantizer.weight_proj.weight', 'quantizer.codevectors', 'project_q.bias']\n",
|
357 |
"- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
358 |
"- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
359 |
+
"Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-base and are newly initialized: ['lm_head.weight', 'lm_head.bias']\n",
|
360 |
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
361 |
]
|
362 |
}
|
|
|
391 |
"from transformers import Trainer\n",
|
392 |
"\n",
|
393 |
"training_args = TrainingArguments(\n",
|
394 |
+
" output_dir=\"./\",\n",
|
395 |
" group_by_length=True,\n",
|
396 |
" per_device_train_batch_size=8,\n",
|
397 |
" evaluation_strategy=\"steps\",\n",
|
398 |
+
" num_train_epochs=3,\n",
|
399 |
" fp16=False,\n",
|
400 |
" gradient_checkpointing=True,\n",
|
401 |
" save_steps=500,\n",
|
|
|
431 |
"The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
|
432 |
"***** Running training *****\n",
|
433 |
" Num examples = 1\n",
|
434 |
+
" Num Epochs = 3\n",
|
435 |
" Instantaneous batch size per device = 8\n",
|
436 |
" Total train batch size (w. parallel, distributed & accumulation) = 8\n",
|
437 |
" Gradient Accumulation steps = 1\n",
|
438 |
+
" Total optimization steps = 3\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
]
|
440 |
},
|
441 |
{
|
|
|
444 |
"\n",
|
445 |
" <div>\n",
|
446 |
" \n",
|
447 |
+
" <progress value='3' max='3' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
448 |
+
" [3/3 00:02, Epoch 3/3]\n",
|
449 |
" </div>\n",
|
450 |
" <table border=\"1\" class=\"dataframe\">\n",
|
451 |
" <thead>\n",
|
|
|
480 |
{
|
481 |
"data": {
|
482 |
"text/plain": [
|
483 |
+
"TrainOutput(global_step=3, training_loss=10.471563975016275, metrics={'train_runtime': 3.8966, 'train_samples_per_second': 0.77, 'train_steps_per_second': 0.77, 'total_flos': 94374986431680.0, 'train_loss': 10.471563975016275, 'epoch': 3.0})"
|
484 |
]
|
485 |
},
|
486 |
"execution_count": 46,
|
|
|
495 |
{
|
496 |
"cell_type": "code",
|
497 |
"execution_count": 47,
|
498 |
+
"id": "333d43cf-add3-4d78-bbca-b44c638519fe",
|
499 |
"metadata": {},
|
500 |
"outputs": [
|
501 |
{
|
502 |
"name": "stderr",
|
503 |
"output_type": "stream",
|
504 |
"text": [
|
505 |
+
"Saving model checkpoint to ./\n",
|
506 |
+
"Configuration saved in ./config.json\n",
|
507 |
+
"Model weights saved in ./pytorch_model.bin\n",
|
508 |
+
"Configuration saved in ./preprocessor_config.json\n"
|
509 |
]
|
510 |
},
|
511 |
{
|
|
|
515 |
"traceback": [
|
516 |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
517 |
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
518 |
+
"Input \u001b[0;32mIn [47]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhub_model_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msharpcoder/wav2vec2_bjorn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
519 |
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/transformers/trainer.py:2677\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_world_process_zero():\n\u001b[1;32m 2675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m-> 2677\u001b[0m git_head_commit_url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepo\u001b[49m\u001b[38;5;241m.\u001b[39mpush_to_hub(commit_message\u001b[38;5;241m=\u001b[39mcommit_message, blocking\u001b[38;5;241m=\u001b[39mblocking)\n\u001b[1;32m 2678\u001b[0m \u001b[38;5;66;03m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m 2679\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mshould_save:\n",
|
520 |
"\u001b[0;31mAttributeError\u001b[0m: 'Trainer' object has no attribute 'repo'"
|
521 |
]
|
522 |
}
|
523 |
],
|
524 |
+
"source": [
|
525 |
+
"trainer.push_to_hub(hub_model_id=\"sharpcoder/wav2vec2_bjorn\")"
|
526 |
+
]
|
527 |
},
|
528 |
{
|
529 |
"cell_type": "code",
|
530 |
"execution_count": null,
|
531 |
+
"id": "a5cb9a88-2443-4bd9-85ac-12bf80a9e325",
|
532 |
"metadata": {},
|
533 |
"outputs": [],
|
534 |
"source": []
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 377667031
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea220cc133930f98791c7b7a1d76d68b159241b625a40a783d4e05d2c93c11d7
|
3 |
size 377667031
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19c7738f5655571cd7c062b8a732e09ad439c7c98c6a054da91449f8906026bf
|
3 |
+
size 2735
|
vocab.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"w": 0, "
|
|
|
1 |
+
{"w": 0, "a": 1, "o": 3, "e": 4, "j": 5, "n": 6, "p": 7, "l": 8, ".": 9, "i": 10, "b": 11, "d": 12, "h": 13, "r": 14, "y": 15, "m": 16, "s": 17, "|": 2, "[UNK]": 18, "[PAD]": 19}
|