Josh Cole commited on
Commit
fea66a8
·
1 Parent(s): a363672

update model

Browse files
Files changed (4) hide show
  1. Generate.ipynb +33 -37
  2. pytorch_model.bin +1 -1
  3. training_args.bin +2 -2
  4. vocab.json +1 -1
Generate.ipynb CHANGED
@@ -9,7 +9,7 @@
9
  {
10
  "data": {
11
  "application/vnd.jupyter.widget-view+json": {
12
- "model_id": "50bf0f78f5f044dd8be6b181b2cb0949",
13
  "version_major": 2,
14
  "version_minor": 0
15
  },
@@ -28,7 +28,7 @@
28
  },
29
  {
30
  "cell_type": "code",
31
- "execution_count": 3,
32
  "id": "38bdf299-f60d-43ea-9230-df1be861e406",
33
  "metadata": {},
34
  "outputs": [
@@ -43,7 +43,7 @@
43
  {
44
  "data": {
45
  "application/vnd.jupyter.widget-view+json": {
46
- "model_id": "c495fe2f4a44499fb32751d60ac1488e",
47
  "version_major": 2,
48
  "version_minor": 0
49
  },
@@ -62,14 +62,14 @@
62
  },
63
  {
64
  "cell_type": "code",
65
- "execution_count": 38,
66
  "id": "75b32151-eb53-4476-8c1f-7e6da72e173e",
67
  "metadata": {},
68
  "outputs": [
69
  {
70
  "data": {
71
  "application/vnd.jupyter.widget-view+json": {
72
- "model_id": "0f019d1f864b4b56af5c828588fd89bf",
73
  "version_major": 2,
74
  "version_minor": 0
75
  },
@@ -88,7 +88,7 @@
88
  " return {\"vocab\": [vocab], \"all_text\": [all_text]}\n",
89
  "\n",
90
  "vocabs = ds.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=ds.column_names[\"train\"])\n",
91
- "vocab_list = list(set(vocabs[\"train\"][\"vocab\"][0]) | set(vocabs[\"train\"][\"vocab\"][0]))\n",
92
  "vocab_dict = {v: k for k, v in enumerate(vocab_list)}\n",
93
  "vocab_dict[\"|\"] = vocab_dict[\" \"]\n",
94
  "del vocab_dict[\" \"]\n",
@@ -102,7 +102,7 @@
102
  },
103
  {
104
  "cell_type": "code",
105
- "execution_count": 39,
106
  "id": "d214872e-d4b1-4aa7-be07-8a1591961968",
107
  "metadata": {},
108
  "outputs": [],
@@ -111,14 +111,14 @@
111
  "from transformers import Wav2Vec2FeatureExtractor\n",
112
  "from transformers import Wav2Vec2Processor\n",
113
  "\n",
114
- "tokenizer = Wav2Vec2CTCTokenizer(\"./vocab.json\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\"|\")\n",
115
  "feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)\n",
116
  "processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)"
117
  ]
118
  },
119
  {
120
  "cell_type": "code",
121
- "execution_count": 40,
122
  "id": "e906c45f-6971-43c3-ad0a-b13363100bdf",
123
  "metadata": {},
124
  "outputs": [],
@@ -137,7 +137,7 @@
137
  },
138
  {
139
  "cell_type": "code",
140
- "execution_count": 41,
141
  "id": "8c083db6-eab5-4f25-9a08-eab50d2d30ac",
142
  "metadata": {},
143
  "outputs": [
@@ -151,7 +151,7 @@
151
  {
152
  "data": {
153
  "application/vnd.jupyter.widget-view+json": {
154
- "model_id": "3b36aee8ffc44253a8381da4d0f4c362",
155
  "version_major": 2,
156
  "version_minor": 0
157
  },
@@ -169,7 +169,7 @@
169
  },
170
  {
171
  "cell_type": "code",
172
- "execution_count": 42,
173
  "id": "50c9a6ad-9e79-4a1c-a5ce-6e1f73a96e4d",
174
  "metadata": {},
175
  "outputs": [],
@@ -242,7 +242,7 @@
242
  },
243
  {
244
  "cell_type": "code",
245
- "execution_count": 43,
246
  "id": "1025ffdf-cb83-4895-89ab-a98bc3fab642",
247
  "metadata": {},
248
  "outputs": [],
@@ -253,7 +253,7 @@
253
  },
254
  {
255
  "cell_type": "code",
256
- "execution_count": 44,
257
  "id": "71351cf4-6d00-40ae-89cc-cedb87073625",
258
  "metadata": {},
259
  "outputs": [
@@ -353,10 +353,10 @@
353
  "}\n",
354
  "\n",
355
  "loading weights file https://huggingface.co/facebook/wav2vec2-base/resolve/main/pytorch_model.bin from cache at /home/sharpcoder/.cache/huggingface/transformers/ef45231897ce572a660ebc5a63d3702f1a6041c4c5fb78cbec330708531939b3.fcae05302a685f7904c551c8ea571e8bc2a2c4a1777ea81ad66e47f7883a650a\n",
356
- "Some weights of the model checkpoint at facebook/wav2vec2-base were not used when initializing Wav2Vec2ForCTC: ['project_q.bias', 'project_hid.bias', 'quantizer.codevectors', 'project_q.weight', 'quantizer.weight_proj.weight', 'quantizer.weight_proj.bias', 'project_hid.weight']\n",
357
  "- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
358
  "- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
359
- "Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-base and are newly initialized: ['lm_head.bias', 'lm_head.weight']\n",
360
  "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
361
  ]
362
  }
@@ -391,11 +391,11 @@
391
  "from transformers import Trainer\n",
392
  "\n",
393
  "training_args = TrainingArguments(\n",
394
- " output_dir=\"sharpcoder/wav2vec2_bjorn\",\n",
395
  " group_by_length=True,\n",
396
  " per_device_train_batch_size=8,\n",
397
  " evaluation_strategy=\"steps\",\n",
398
- " num_train_epochs=30,\n",
399
  " fp16=False,\n",
400
  " gradient_checkpointing=True,\n",
401
  " save_steps=500,\n",
@@ -431,17 +431,11 @@
431
  "The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
432
  "***** Running training *****\n",
433
  " Num examples = 1\n",
434
- " Num Epochs = 30\n",
435
  " Instantaneous batch size per device = 8\n",
436
  " Total train batch size (w. parallel, distributed & accumulation) = 8\n",
437
  " Gradient Accumulation steps = 1\n",
438
- " Total optimization steps = 30\n",
439
- "/home/sharpcoder/.local/lib/python3.10/site-packages/transformers/feature_extraction_utils.py:158: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at ../torch/csrc/utils/tensor_new.cpp:210.)\n",
440
- " tensor = as_tensor(value)\n",
441
- "/home/sharpcoder/.local/lib/python3.10/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:882: UserWarning: __floordiv__ is deprecated, and its behavior will change in a future version of pytorch. It currently rounds toward 0 (like the 'trunc' function NOT 'floor'). This results in incorrect rounding for negative values. To keep the current behavior, use torch.div(a, b, rounding_mode='trunc'), or for actual floor division, use torch.div(a, b, rounding_mode='floor').\n",
442
- " return (input_length - kernel_size) // stride + 1\n",
443
- "/home/sharpcoder/.local/lib/python3.10/site-packages/torch/autocast_mode.py:162: UserWarning: User provided device_type of 'cuda', but CUDA is not available. Disabling\n",
444
- " warnings.warn('User provided device_type of \\'cuda\\', but CUDA is not available. Disabling')\n"
445
  ]
446
  },
447
  {
@@ -450,8 +444,8 @@
450
  "\n",
451
  " <div>\n",
452
  " \n",
453
- " <progress value='30' max='30' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
454
- " [30/30 00:29, Epoch 30/30]\n",
455
  " </div>\n",
456
  " <table border=\"1\" class=\"dataframe\">\n",
457
  " <thead>\n",
@@ -486,7 +480,7 @@
486
  {
487
  "data": {
488
  "text/plain": [
489
- "TrainOutput(global_step=30, training_loss=7.301008097330729, metrics={'train_runtime': 30.6312, 'train_samples_per_second': 0.979, 'train_steps_per_second': 0.979, 'total_flos': 943749864316800.0, 'train_loss': 7.301008097330729, 'epoch': 30.0})"
490
  ]
491
  },
492
  "execution_count": 46,
@@ -501,17 +495,17 @@
501
  {
502
  "cell_type": "code",
503
  "execution_count": 47,
504
- "id": "70866f1f-3745-4e68-acd5-f50b6eff348b",
505
  "metadata": {},
506
  "outputs": [
507
  {
508
  "name": "stderr",
509
  "output_type": "stream",
510
  "text": [
511
- "Saving model checkpoint to sharpcoder/wav2vec2_bjorn\n",
512
- "Configuration saved in sharpcoder/wav2vec2_bjorn/config.json\n",
513
- "Model weights saved in sharpcoder/wav2vec2_bjorn/pytorch_model.bin\n",
514
- "Configuration saved in sharpcoder/wav2vec2_bjorn/preprocessor_config.json\n"
515
  ]
516
  },
517
  {
@@ -521,18 +515,20 @@
521
  "traceback": [
522
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
523
  "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
524
- "Input \u001b[0;32mIn [47]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
525
  "File \u001b[0;32m~/.local/lib/python3.10/site-packages/transformers/trainer.py:2677\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_world_process_zero():\n\u001b[1;32m 2675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m-> 2677\u001b[0m git_head_commit_url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepo\u001b[49m\u001b[38;5;241m.\u001b[39mpush_to_hub(commit_message\u001b[38;5;241m=\u001b[39mcommit_message, blocking\u001b[38;5;241m=\u001b[39mblocking)\n\u001b[1;32m 2678\u001b[0m \u001b[38;5;66;03m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m 2679\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mshould_save:\n",
526
  "\u001b[0;31mAttributeError\u001b[0m: 'Trainer' object has no attribute 'repo'"
527
  ]
528
  }
529
  ],
530
- "source": []
 
 
531
  },
532
  {
533
  "cell_type": "code",
534
  "execution_count": null,
535
- "id": "333d43cf-add3-4d78-bbca-b44c638519fe",
536
  "metadata": {},
537
  "outputs": [],
538
  "source": []
 
9
  {
10
  "data": {
11
  "application/vnd.jupyter.widget-view+json": {
12
+ "model_id": "7afc85b57ea24d31a2fdcc2b1f5c9ace",
13
  "version_major": 2,
14
  "version_minor": 0
15
  },
 
28
  },
29
  {
30
  "cell_type": "code",
31
+ "execution_count": 2,
32
  "id": "38bdf299-f60d-43ea-9230-df1be861e406",
33
  "metadata": {},
34
  "outputs": [
 
43
  {
44
  "data": {
45
  "application/vnd.jupyter.widget-view+json": {
46
+ "model_id": "18cae671f8fd4f9baac804c91fee03bf",
47
  "version_major": 2,
48
  "version_minor": 0
49
  },
 
62
  },
63
  {
64
  "cell_type": "code",
65
+ "execution_count": 22,
66
  "id": "75b32151-eb53-4476-8c1f-7e6da72e173e",
67
  "metadata": {},
68
  "outputs": [
69
  {
70
  "data": {
71
  "application/vnd.jupyter.widget-view+json": {
72
+ "model_id": "0611b2fa6cf740d6925d03cf3ba525a2",
73
  "version_major": 2,
74
  "version_minor": 0
75
  },
 
88
  " return {\"vocab\": [vocab], \"all_text\": [all_text]}\n",
89
  "\n",
90
  "vocabs = ds.map(extract_all_chars, batched=True, batch_size=-1, keep_in_memory=True, remove_columns=ds.column_names[\"train\"])\n",
91
+ "vocab_list = list(set(vocabs[\"train\"][\"vocab\"][0]))\n",
92
  "vocab_dict = {v: k for k, v in enumerate(vocab_list)}\n",
93
  "vocab_dict[\"|\"] = vocab_dict[\" \"]\n",
94
  "del vocab_dict[\" \"]\n",
 
102
  },
103
  {
104
  "cell_type": "code",
105
+ "execution_count": 23,
106
  "id": "d214872e-d4b1-4aa7-be07-8a1591961968",
107
  "metadata": {},
108
  "outputs": [],
 
111
  "from transformers import Wav2Vec2FeatureExtractor\n",
112
  "from transformers import Wav2Vec2Processor\n",
113
  "\n",
114
+ "tokenizer = Wav2Vec2CTCTokenizer(\"./vocab.json\", unk_token=\"[UNK]\", pad_token=\"[PAD]\", word_delimiter_token=\" \")\n",
115
  "feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=False)\n",
116
  "processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)"
117
  ]
118
  },
119
  {
120
  "cell_type": "code",
121
+ "execution_count": 24,
122
  "id": "e906c45f-6971-43c3-ad0a-b13363100bdf",
123
  "metadata": {},
124
  "outputs": [],
 
137
  },
138
  {
139
  "cell_type": "code",
140
+ "execution_count": 25,
141
  "id": "8c083db6-eab5-4f25-9a08-eab50d2d30ac",
142
  "metadata": {},
143
  "outputs": [
 
151
  {
152
  "data": {
153
  "application/vnd.jupyter.widget-view+json": {
154
+ "model_id": "ae21f7b6a50241e4ab4dd2b5c7c5689c",
155
  "version_major": 2,
156
  "version_minor": 0
157
  },
 
169
  },
170
  {
171
  "cell_type": "code",
172
+ "execution_count": 26,
173
  "id": "50c9a6ad-9e79-4a1c-a5ce-6e1f73a96e4d",
174
  "metadata": {},
175
  "outputs": [],
 
242
  },
243
  {
244
  "cell_type": "code",
245
+ "execution_count": 27,
246
  "id": "1025ffdf-cb83-4895-89ab-a98bc3fab642",
247
  "metadata": {},
248
  "outputs": [],
 
253
  },
254
  {
255
  "cell_type": "code",
256
+ "execution_count": 35,
257
  "id": "71351cf4-6d00-40ae-89cc-cedb87073625",
258
  "metadata": {},
259
  "outputs": [
 
353
  "}\n",
354
  "\n",
355
  "loading weights file https://huggingface.co/facebook/wav2vec2-base/resolve/main/pytorch_model.bin from cache at /home/sharpcoder/.cache/huggingface/transformers/ef45231897ce572a660ebc5a63d3702f1a6041c4c5fb78cbec330708531939b3.fcae05302a685f7904c551c8ea571e8bc2a2c4a1777ea81ad66e47f7883a650a\n",
356
+ "Some weights of the model checkpoint at facebook/wav2vec2-base were not used when initializing Wav2Vec2ForCTC: ['project_hid.bias', 'quantizer.weight_proj.bias', 'project_q.weight', 'project_hid.weight', 'quantizer.weight_proj.weight', 'quantizer.codevectors', 'project_q.bias']\n",
357
  "- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
358
  "- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
359
+ "Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-base and are newly initialized: ['lm_head.weight', 'lm_head.bias']\n",
360
  "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
361
  ]
362
  }
 
391
  "from transformers import Trainer\n",
392
  "\n",
393
  "training_args = TrainingArguments(\n",
394
+ " output_dir=\"./\",\n",
395
  " group_by_length=True,\n",
396
  " per_device_train_batch_size=8,\n",
397
  " evaluation_strategy=\"steps\",\n",
398
+ " num_train_epochs=3,\n",
399
  " fp16=False,\n",
400
  " gradient_checkpointing=True,\n",
401
  " save_steps=500,\n",
 
431
  "The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
432
  "***** Running training *****\n",
433
  " Num examples = 1\n",
434
+ " Num Epochs = 3\n",
435
  " Instantaneous batch size per device = 8\n",
436
  " Total train batch size (w. parallel, distributed & accumulation) = 8\n",
437
  " Gradient Accumulation steps = 1\n",
438
+ " Total optimization steps = 3\n"
 
 
 
 
 
 
439
  ]
440
  },
441
  {
 
444
  "\n",
445
  " <div>\n",
446
  " \n",
447
+ " <progress value='3' max='3' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
448
+ " [3/3 00:02, Epoch 3/3]\n",
449
  " </div>\n",
450
  " <table border=\"1\" class=\"dataframe\">\n",
451
  " <thead>\n",
 
480
  {
481
  "data": {
482
  "text/plain": [
483
+ "TrainOutput(global_step=3, training_loss=10.471563975016275, metrics={'train_runtime': 3.8966, 'train_samples_per_second': 0.77, 'train_steps_per_second': 0.77, 'total_flos': 94374986431680.0, 'train_loss': 10.471563975016275, 'epoch': 3.0})"
484
  ]
485
  },
486
  "execution_count": 46,
 
495
  {
496
  "cell_type": "code",
497
  "execution_count": 47,
498
+ "id": "333d43cf-add3-4d78-bbca-b44c638519fe",
499
  "metadata": {},
500
  "outputs": [
501
  {
502
  "name": "stderr",
503
  "output_type": "stream",
504
  "text": [
505
+ "Saving model checkpoint to ./\n",
506
+ "Configuration saved in ./config.json\n",
507
+ "Model weights saved in ./pytorch_model.bin\n",
508
+ "Configuration saved in ./preprocessor_config.json\n"
509
  ]
510
  },
511
  {
 
515
  "traceback": [
516
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
517
  "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
518
+ "Input \u001b[0;32mIn [47]\u001b[0m, in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhub_model_id\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43msharpcoder/wav2vec2_bjorn\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
519
  "File \u001b[0;32m~/.local/lib/python3.10/site-packages/transformers/trainer.py:2677\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mis_world_process_zero():\n\u001b[1;32m 2675\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[0;32m-> 2677\u001b[0m git_head_commit_url \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrepo\u001b[49m\u001b[38;5;241m.\u001b[39mpush_to_hub(commit_message\u001b[38;5;241m=\u001b[39mcommit_message, blocking\u001b[38;5;241m=\u001b[39mblocking)\n\u001b[1;32m 2678\u001b[0m \u001b[38;5;66;03m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m 2679\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39margs\u001b[38;5;241m.\u001b[39mshould_save:\n",
520
  "\u001b[0;31mAttributeError\u001b[0m: 'Trainer' object has no attribute 'repo'"
521
  ]
522
  }
523
  ],
524
+ "source": [
525
+ "trainer.push_to_hub(hub_model_id=\"sharpcoder/wav2vec2_bjorn\")"
526
+ ]
527
  },
528
  {
529
  "cell_type": "code",
530
  "execution_count": null,
531
+ "id": "a5cb9a88-2443-4bd9-85ac-12bf80a9e325",
532
  "metadata": {},
533
  "outputs": [],
534
  "source": []
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:873bf552da3de5ce2fc1efbe234017f06cf7b9b70812d408585136c69486cb81
3
  size 377667031
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea220cc133930f98791c7b7a1d76d68b159241b625a40a783d4e05d2c93c11d7
3
  size 377667031
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2b61aecf82c993254e7b0fbeb1c240469688a2bf27cd91d288ef05824cd7c911
3
- size 2799
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19c7738f5655571cd7c062b8a732e09ad439c7c98c6a054da91449f8906026bf
3
+ size 2735
vocab.json CHANGED
@@ -1 +1 @@
1
- {"w": 0, "y": 1, "m": 2, "i": 3, "e": 4, "s": 5, "r": 6, "p": 7, "n": 8, "a": 9, "h": 10, ".": 11, "j": 12, "b": 13, "d": 14, "l": 15, "o": 16, "|": 17, "[UNK]": 18, "[PAD]": 19}
 
1
+ {"w": 0, "a": 1, "o": 3, "e": 4, "j": 5, "n": 6, "p": 7, "l": 8, ".": 9, "i": 10, "b": 11, "d": 12, "h": 13, "r": 14, "y": 15, "m": 16, "s": 17, "|": 2, "[UNK]": 18, "[PAD]": 19}