--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy - precision - recall - f1 widget: - text: "
https://kwotsin.github.io/tech/2017/02/11/transfer-learning.html\n\ I followed the above link to make a image classifier
\n\nTraining code:
\n\ \nslim = tf.contrib.slim\n\ndataset_dir = './data'\nlog_dir = './log'\n\
checkpoint_file = './inception_resnet_v2_2016_08_30.ckpt'\nimage_size = 299\n\
num_classes = 21\nvlabels_file = './labels.txt'\nlabels = open(labels_file, 'r')\n\
labels_to_name = {}\nfor line in labels:\n label, string_name = line.split(':')\n\
\ string_name = string_name[:-1]\n labels_to_name[int(label)] = string_name\n\
\nfile_pattern = 'test_%s_*.tfrecord'\n\nitems_to_descriptions = {\n 'image':\
\ 'A 3-channel RGB coloured product image',\n 'label': 'A label that from 20\
\ labels'\n}\n\nnum_epochs = 10\nbatch_size = 16\ninitial_learning_rate = 0.001\n\
learning_rate_decay_factor = 0.7\nnum_epochs_before_decay = 4\n\ndef get_split(split_name,\
\ dataset_dir, file_pattern=file_pattern, file_pattern_for_counting='products'):\n\
\ if split_name not in ['train', 'validation']:\n raise ValueError(\n\
\ 'The split_name %s is not recognized. Please input either train or\
\ validation as the split_name' % (\n split_name))\n\n file_pattern_path\
\ = os.path.join(dataset_dir, file_pattern % (split_name))\n\n num_samples\
\ = 0\n file_pattern_for_counting = file_pattern_for_counting + '_' + split_name\n\
\ tfrecords_to_count = [os.path.join(dataset_dir, file) for file in os.listdir(dataset_dir)\
\ if\n file.startswith(file_pattern_for_counting)]\n\
\ for tfrecord_file in tfrecords_to_count:\n for record in tf.python_io.tf_record_iterator(tfrecord_file):\n\
\ num_samples += 1\n\n test = num_samples\n\n reader = tf.TFRecordReader\n\
\n keys_to_features = {\n 'image/encoded': tf.FixedLenFeature((), tf.string,\
\ default_value=''),\n 'image/format': tf.FixedLenFeature((), tf.string,\
\ default_value='jpg'),\n 'image/class/label': tf.FixedLenFeature(\n \
\ [], tf.int64, default_value=tf.zeros([], dtype=tf.int64)),\n }\n\
\n items_to_handlers = {\n 'image': slim.tfexample_decoder.Image(),\n\
\ 'label': slim.tfexample_decoder.Tensor('image/class/label'),\n }\n\
\n decoder = slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers)\n\
\n labels_to_name_dict = labels_to_name\n\n dataset = slim.dataset.Dataset(\n\
\ data_sources=file_pattern_path,\n decoder=decoder,\n reader=reader,\n\
\ num_readers=4,\n num_samples=num_samples,\n num_classes=num_classes,\n\
\ labels_to_name=labels_to_name_dict,\n items_to_descriptions=items_to_descriptions)\n\
\n return dataset\n\ndef load_batch(dataset, batch_size, height=image_size,\
\ width=image_size, is_training=True):\n '''\n Loads a batch for training.\n\
\n INPUTS:\n - dataset(Dataset): a Dataset class object that is created\
\ from the get_split function\n - batch_size(int): determines how big of a\
\ batch to train\n - height(int): the height of the image to resize to during\
\ preprocessing\n - width(int): the width of the image to resize to during\
\ preprocessing\n - is_training(bool): to determine whether to perform a training\
\ or evaluation preprocessing\n\n OUTPUTS:\n - images(Tensor): a Tensor\
\ of the shape (batch_size, height, width, channels) that contain one batch of\
\ images\n - labels(Tensor): the batch's labels with the shape (batch_size,)\
\ (requires one_hot_encoding).\n\n '''\n # First create the data_provider\
\ object\n data_provider = slim.dataset_data_provider.DatasetDataProvider(\n\
\ dataset,\n common_queue_capacity=24 + 3 * batch_size,\n \
\ common_queue_min=24)\n\n # Obtain the raw image using the get method\n \
\ raw_image, label = data_provider.get(['image', 'label'])\n\n # Perform\
\ the correct preprocessing for this image depending if it is training or evaluating\n\
\ image = inception_preprocessing.preprocess_image(raw_image, height, width,\
\ is_training)\n\n # As for the raw images, we just do a simple reshape to\
\ batch it up\n raw_image = tf.expand_dims(raw_image, 0)\n raw_image = tf.image.resize_nearest_neighbor(raw_image,\
\ [height, width])\n raw_image = tf.squeeze(raw_image)\n\n # Batch up the\
\ image by enqueing the tensors internally in a FIFO queue and dequeueing many\
\ elements with tf.train.batch.\n images, raw_images, labels = tf.train.batch(\n\
\ [image, raw_image, label],\n batch_size=batch_size,\n num_threads=4,\n\
\ capacity=4 * batch_size,\n allow_smaller_final_batch=True)\n\n\
\ return images, raw_images, labels\n\n\ndef run():\n # Create the log directory\
\ here. Must be done here otherwise import will activate this unneededly.\n \
\ if not os.path.exists(log_dir):\n os.mkdir(log_dir)\n\n # =======================\
\ TRAINING PROCESS =========================\n # Now we start to construct\
\ the graph and build our model\n with tf.Graph().as_default() as graph:\n\
\ tf.logging.set_verbosity(tf.logging.INFO) # Set the verbosity to INFO\
\ level\n\n # First create the dataset and load one batch\n dataset\
\ = get_split('train', dataset_dir, file_pattern=file_pattern)\n images,\
\ _, labels = load_batch(dataset, batch_size=batch_size)\n\n # Know the\
\ number steps to take before decaying the learning rate and batches per epoch\n\
\ num_batches_per_epoch = int(dataset.num_samples / batch_size)\n \
\ num_steps_per_epoch = num_batches_per_epoch # Because one step is one batch\
\ processed\n decay_steps = int(num_epochs_before_decay * num_steps_per_epoch)\n\
\n # Create the model inference\n with slim.arg_scope(inception_resnet_v2_arg_scope()):\n\
\ logits, end_points = inception_resnet_v2(images, num_classes=dataset.num_classes,\
\ is_training=True)\n\n # Define the scopes that you want to exclude for\
\ restoration\n exclude = ['InceptionResnetV2/Logits', 'InceptionResnetV2/AuxLogits']\n\
\ variables_to_restore = slim.get_variables_to_restore(exclude=exclude)\n\
\n # Perform one-hot-encoding of the labels (Try one-hot-encoding within\
\ the load_batch function!)\n one_hot_labels = slim.one_hot_encoding(labels,\
\ dataset.num_classes)\n\n # Performs the equivalent to tf.nn.sparse_softmax_cross_entropy_with_logits\
\ but enhanced with checks\n loss = tf.losses.softmax_cross_entropy(onehot_labels=one_hot_labels,\
\ logits=logits)\n total_loss = tf.losses.get_total_loss() # obtain the\
\ regularization losses as well\n\n # Create the global step for monitoring\
\ the learning_rate and training.\n global_step = get_or_create_global_step()\n\
\n # Define your exponentially decaying learning rate\n lr = tf.train.exponential_decay(\n\
\ learning_rate=initial_learning_rate,\n global_step=global_step,\n\
\ decay_steps=decay_steps,\n decay_rate=learning_rate_decay_factor,\n\
\ staircase=True)\n\n # Now we can define the optimizer that\
\ takes on the learning rate\n optimizer = tf.train.AdamOptimizer(learning_rate=lr)\n\
\n # Create the train_op.\n train_op = slim.learning.create_train_op(total_loss,\
\ optimizer)\n\n # State the metrics that you want to predict. We get a\
\ predictions that is not one_hot_encoded.\n predictions = tf.argmax(end_points['Predictions'],\
\ 1)\n probabilities = end_points['Predictions']\n accuracy, accuracy_update\
\ = tf.contrib.metrics.streaming_accuracy(predictions, labels)\n metrics_op\
\ = tf.group(accuracy_update, probabilities)\n\n # Now finally create all\
\ the summaries you need to monitor and group them into one summary op.\n \
\ tf.summary.scalar('losses/Total_Loss', total_loss)\n tf.summary.scalar('accuracy',\
\ accuracy)\n tf.summary.scalar('learning_rate', lr)\n my_summary_op\
\ = tf.summary.merge_all()\n\n # Now we need to create a training step\
\ function that runs both the train_op, metrics_op and updates the global_step\
\ concurrently.\n def train_step(sess, train_op, global_step):\n \
\ '''\n Simply runs a session for the three arguments provided\
\ and gives a logging on the time elapsed for each global step\n '''\n\
\ # Check the time for each sess run\n start_time = time.time()\n\
\ total_loss, global_step_count, _ = sess.run([train_op, global_step,\
\ metrics_op])\n time_elapsed = time.time() - start_time\n\n \
\ # Run the logging to print some results\n logging.info('global\
\ step %s: loss: %.4f (%.2f sec/step)', global_step_count, total_loss, time_elapsed)\n\
\n return total_loss, global_step_count\n\n # Now we create\
\ a saver function that actually restores the variables from a checkpoint file\
\ in a sess\n saver = tf.train.Saver(variables_to_restore)\n\n def\
\ restore_fn(sess):\n return saver.restore(sess, checkpoint_file)\n\
\n # Define your supervisor for running a managed session. Do not run the\
\ summary_op automatically or else it will consume too much memory\n sv\
\ = tf.train.Supervisor(logdir=log_dir, summary_op=None, init_fn=restore_fn)\n\
\n # Run the managed session\n with sv.managed_session() as sess:\n\
\ for step in xrange(num_steps_per_epoch * num_epochs):\n \
\ # At the start of every epoch, show the vital information:\n \
\ if step % num_batches_per_epoch == 0:\n logging.info('Epoch\
\ %s/%s', step / num_batches_per_epoch + 1, num_epochs)\n learning_rate_value,\
\ accuracy_value = sess.run([lr, accuracy])\n logging.info('Current\
\ Learning Rate: %s', learning_rate_value)\n logging.info('Current\
\ Streaming Accuracy: %s', accuracy_value)\n\n # optionally,\
\ print your logits and predictions for a sanity check that things are going fine.\n\
\ logits_value, probabilities_value, predictions_value, labels_value\
\ = sess.run(\n [logits, probabilities, predictions, labels])\n\
\ print 'logits: \\n', logits_value\n print\
\ 'Probabilities: \\n', probabilities_value\n print 'predictions:\
\ \\n', predictions_value\n print 'Labels:\\n:', labels_value\n\
\n # Log the summaries every 10 step.\n if step\
\ % 10 == 0:\n loss, _ = train_step(sess, train_op, sv.global_step)\n\
\ summaries = sess.run(my_summary_op)\n \
\ sv.summary_computed(sess, summaries)\n\n # If not, simply run\
\ the training step\n else:\n loss, _ = train_step(sess,\
\ train_op, sv.global_step)\n\n # We log the final training loss and\
\ accuracy\n logging.info('Final Loss: %s', loss)\n logging.info('Final\
\ Accuracy: %s', sess.run(accuracy))\n\n # Once all the training has\
\ been done, save the log files and checkpoint model\n logging.info('Finished\
\ training! Saving model to disk now.')\n sv.saver.save(sess, sv.save_path,\
\ global_step=sv.global_step)\n
\n\nThis code seems to work an\ \ I have ran training on some sample data and Im getting 94% accuracy
\n\n\Evaluation code:
\n\nlog_dir = './log'\nlog_eval = './log_eval_test'\n\
dataset_dir = './data'\nbatch_size = 10\nnum_epochs = 1\n\ncheckpoint_file = tf.train.latest_checkpoint('./')\n\
\n\ndef run():\n if not os.path.exists(log_eval):\n os.mkdir(log_eval)\n\
\ with tf.Graph().as_default() as graph:\n tf.logging.set_verbosity(tf.logging.INFO)\n\
\ dataset = get_split('train', dataset_dir)\n images, raw_images,\
\ labels = load_batch(dataset, batch_size=batch_size, is_training=False)\n\n \
\ num_batches_per_epoch = dataset.num_samples / batch_size\n num_steps_per_epoch\
\ = num_batches_per_epoch\n\n with slim.arg_scope(inception_resnet_v2_arg_scope()):\n\
\ logits, end_points = inception_resnet_v2(images, num_classes=dataset.num_classes,\
\ is_training=False)\n\n variables_to_restore = slim.get_variables_to_restore()\n\
\ saver = tf.train.Saver(variables_to_restore)\n\n def restore_fn(sess):\n\
\ return saver.restore(sess, checkpoint_file)\n\n predictions\
\ = tf.argmax(end_points['Predictions'], 1)\n accuracy, accuracy_update\
\ = tf.contrib.metrics.streaming_accuracy(predictions, labels)\n metrics_op\
\ = tf.group(accuracy_update)\n\n global_step = get_or_create_global_step()\n\
\ global_step_op = tf.assign(global_step, global_step + 1)\n\n def\
\ eval_step(sess, metrics_op, global_step):\n '''\n Simply\
\ takes in a session, runs the metrics op and some logging information.\n \
\ '''\n start_time = time.time()\n _, global_step_count,\
\ accuracy_value = sess.run([metrics_op, global_step_op, accuracy])\n \
\ time_elapsed = time.time() - start_time\n\n logging.info('Global\
\ Step %s: Streaming Accuracy: %.4f (%.2f sec/step)', global_step_count, accuracy_value,\n\
\ time_elapsed)\n\n return accuracy_value\n\
\n tf.summary.scalar('Validation_Accuracy', accuracy)\n my_summary_op\
\ = tf.summary.merge_all()\n\n sv = tf.train.Supervisor(logdir=log_eval,\
\ summary_op=None, saver=None, init_fn=restore_fn)\n\n with sv.managed_session()\
\ as sess:\n for step in xrange(num_steps_per_epoch * num_epochs):\n\
\ sess.run(sv.global_step)\n if step % num_batches_per_epoch\
\ == 0:\n logging.info('Epoch: %s/%s', step / num_batches_per_epoch\
\ + 1, num_epochs)\n logging.info('Current Streaming Accuracy:\
\ %.4f', sess.run(accuracy))\n\n if step % 10 == 0:\n \
\ eval_step(sess, metrics_op=metrics_op, global_step=sv.global_step)\n\
\ summaries = sess.run(my_summary_op)\n \
\ sv.summary_computed(sess, summaries)\n\n\n else:\n \
\ eval_step(sess, metrics_op=metrics_op, global_step=sv.global_step)\n\
\n logging.info('Final Streaming Accuracy: %.4f', sess.run(accuracy))\n\
\n raw_images, labels, predictions = sess.run([raw_images, labels,\
\ predictions])\n for i in range(10):\n image, label,\
\ prediction = raw_images[i], labels[i], predictions[i]\n prediction_name,\
\ label_name = dataset.labels_to_name[prediction], dataset.labels_to_name[label]\n\
\ text = 'Prediction: %s \\n Ground Truth: %s' % (prediction_name,\
\ label_name)\n img_plot = plt.imshow(image)\n\n \
\ plt.title(text)\n img_plot.axes.get_yaxis().set_ticks([])\n\
\ img_plot.axes.get_xaxis().set_ticks([])\n plt.show()\n\
\n logging.info(\n 'Model evaluation has completed!\
\ Visit TensorBoard for more information regarding your evaluation.')\n
\n\
\nSo after training the model and getting 94% accuracy i tried to evaluate\ \ the model. On evaluation I get 0-1% accuracy the whole time. I investigated\ \ this only to find that it is predicting the same class every time
\n\nlabels:\
\ [7, 11, 5, 1, 20, 0, 18, 1, 0, 7]\npredictions: [10, 10, 10, 10, 10, 10, 10,\
\ 10, 10, 10]\n
\n\nCan anyone help in where i may be going wrong?
\n\ \nEDIT:
\n\nTensorBoard accuracy and loss form training
\n\n\n\nTensorBoard accuracy from evaluation
\n\n\n\ \nEDIT:
\n\nIve still not been able to solve this issues. I thought there\ \ might be a problem with how I am restoring the graph in the eval script so I\ \ tried using this to restore the model instead
\n\nsaver = tf.train.import_meta_graph('/log/model.ckpt.meta')\n\
\ndef restore_fn(sess):\n return saver.restore(sess, checkpoint_file)\n
\n\
\ninstead of
\n\nvariables_to_restore = slim.get_variables_to_restore()\n\
\ saver = tf.train.Saver(variables_to_restore)\n\ndef restore_fn(sess):\n \
\ return saver.restore(sess, checkpoint_file)\n
\n\nand just\
\ just takes a very long time to start and finally errors. I then tried using\
\ V1 of the writer in the saver (saver = tf.train.Saver(variables_to_restore,\
\ write_version=saver_pb2.SaveDef.V1)
) and retrained and was unable to\
\ load this checkpoint at all as it said variables was missing.
I also\ \ attempted to run my eval script with the same data it trained on just to see\ \ if this may give different results yet I get the same.
\n\nFinally I\ \ re-cloned the repo from the url and ran a train using the same dataset in the\ \ tutorial and I get 0-3% accuracy when I evaluate even after getting it to 84%\ \ whilst training. Also my checkpoints must have the correct information as when\ \ I restart training the accuracy continues from where it left of. It feels like\ \ i'm not doing something correctly when I restore the model. Would really appreciate\ \ any suggestions on this as im at a dead end currently :(
\n" - text: 'I''ve just started using tensorflow for a project I''m working on. The
program aims to be a binary classifier with input being 12 features. The output
is either normal patient or patient with a disease. The prevalence of the disease
is quite low and so my dataset is very imbalanced, with 502 examples of normal
controls and only 38 diseased patients. For this reason, I''m trying to use tf.nn.weighted_cross_entropy_with_logits
as my cost function.
The code is based on the iris custom estimator from the official tensorflow
documentation, and works with tf.losses.sparse_softmax_cross_entropy
as the cost function. However, when I change to weighted_cross_entropy_with_logits
,
I get a shape error and I''m not sure how to fix this.
ValueError: logits and targets must have the same shape ((?, 2) vs
(?,))
I have searched and similar problems have been solved by just reshaping the
labels - I have tried to do this unsuccessfully (and don''t understand why tf.losses.sparse_softmax_cross_entropy
works fine and the weighted version does not).
My full code is here https://gist.github.com/revacious/83142573700c17b8d26a4a1b84b0dff7
Thanks!
' - text: 'In the documentation it seems they focus on how to save and restore tf.keras.models, but i was wondering how do you save and restore models trained customly through some basic iteration loop?
Now that there isnt a graph or a session, how do we save structure defined in a tf function that is customly built without using layer abstractions?
' - text: "I simply have train = optimizer.minimize(loss = tf.constant(4,dtype=\"\
float32\"))
Line of code that i change before everything is working.
Why it is giving error ? Because documentation say it can be tensor Here is Docs
\n\nW = tf.Variable([0.5],tf.float32)\n\
b = tf.Variable([0.1],tf.float32)\nx = tf.placeholder(tf.float32)\ny= tf.placeholder(tf.float32)\n\
discounted_reward = tf.placeholder(tf.float32,shape=[4,], name=\"discounted_reward\"\
)\nlinear_model = W*x + b\n\nsquared_delta = tf.square(linear_model - y)\nprint(squared_delta)\n\
loss = tf.reduce_sum(squared_delta*discounted_reward)\nprint(loss)\noptimizer\
\ = tf.train.GradientDescentOptimizer(0.01)\ntrain = optimizer.minimize(loss =\
\ tf.constant(4,dtype=\"float32\"))\ninit = tf.global_variables_initializer()\n\
sess = tf.Session()\n\nsess.run(init)\n\nfor i in range(3):\n sess.run(train,{x:[1,2,3,4],y:[0,-1,-2,-3],discounted_reward:[1,2,3,4]})\n\
\nprint(sess.run([W,b]))\n
\n\nI really need this thing\ \ to work. In this particular example we can have other ways to solve it but i\ \ need it to work as my actual code can do this only
\n\n> ValueError: No gradients provided for any variable, check your\
\ graph\n> for ops that do not support gradients, between variables\n> [\"\
<tf.Variable 'Variable:0' shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable\
\ 'Variable_1:0' shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_2:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_3:0' shape=(1,)\
\ dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_4:0' shape=(1,) dtype=float32_ref>\"\
,\n> \"<tf.Variable 'Variable_5:0' shape=(1,) dtype=float32_ref>\",\n\
> \"<tf.Variable 'Variable_6:0' shape=(1,) dtype=float32_ref>\",\n>\
\ \"<tf.Variable 'Variable_7:0' shape=(1,) dtype=float32_ref>\",\n> \"\
<tf.Variable 'Variable_8:0' shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable\
\ 'Variable_9:0' shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_10:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_11:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_12:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_13:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_14:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_15:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_16:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_17:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_18:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_19:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_20:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_21:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_22:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_23:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_24:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_25:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_26:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_27:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_28:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_29:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_30:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_31:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_32:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_33:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_34:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_35:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_36:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_37:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_38:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_39:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_40:0'\
\ shape=(1,) dtype=float32_ref>\",\n> \"<tf.Variable 'Variable_41:0'\
\ shape=(1,) dtype=float32_ref>\"] and loss\n> Tensor(\"Const_4:0\", shape=(),\
\ dtype=float32).\n
\n"
- text: "I found in the tensorflow doc:
\n\n\nstacked_lstm\
\ = tf.contrib.rnn.MultiRNNCell([lstm] * number_of_layers,\n ...\n\
I need to use MultiRNNCell
\n\nbut, I write those lines
\n\ \n\na = [tf.nn.rnn_cell.BasicLSTMCell(10)]*3\nprint id(a[0]), id(a[1])\n\
Its output is [4648063696 4648063696]
.
Can MultiRNNCell
use the same object BasicLSTMCell
\
\ as a list for parameter?
I\'m looking to use Tensorflow to train a neural network model for classification, and I want to read data from a CSV file, such as the Iris data set.
\n\nThe Tensorflow documentation shows an example of loading the Iris data and building a prediction model, but the example uses the high-level tf.contrib.learn
API. I want to use the low-level Tensorflow API and run gradient descent myself. How would I do that?
In the following code, I want dense matrix B
to left multiply a sparse matrix A
, but I got errors.
import tensorflow as tf\nimport numpy as np\n\nA = tf.sparse_placeholder(tf.float32)\nB = tf.placeholder(tf.float32, shape=(5,5))\nC = tf.matmul(B,A,a_is_sparse=False,b_is_sparse=True)\nsess = tf.InteractiveSession()\nindices = np.array([[3, 2], [1, 2]], dtype=np.int64)\nvalues = np.array([1.0, 2.0], dtype=np.float32)\nshape = np.array([5,5], dtype=np.int64)\nSparse_A = tf.SparseTensorValue(indices, values, shape)\nRandB = np.ones((5, 5))\nprint sess.run(C, feed_dict={A: Sparse_A, B: RandB})\n
\n\nThe error message is as follows:
\n\nTypeError: Failed to convert object of type <class \'tensorflow.python.framework.sparse_tensor.SparseTensor\'> \nto Tensor. Contents: SparseTensor(indices=Tensor("Placeholder_4:0", shape=(?, ?), dtype=int64), values=Tensor("Placeholder_3:0", shape=(?,), dtype=float32), dense_shape=Tensor("Placeholder_2:0", shape=(?,), dtype=int64)). \nConsider casting elements to a supported type.\n
\n\nWhat\'s wrong with my code?
\n\nI\'m doing this following the documentation and it says we should use a_is_sparse
to denote whether the first matrix is sparse, and similarly with b_is_sparse
. Why is my code wrong?
As is suggested by vijay, I should use C = tf.matmul(B,tf.sparse_tensor_to_dense(A),a_is_sparse=False,b_is_sparse=True)
I tried this but I met with another error saying:
\n\nCaused by op u\'SparseToDense\', defined at:\n File "a.py", line 19, in <module>\n C = tf.matmul(B,tf.sparse_tensor_to_dense(A),a_is_sparse=False,b_is_sparse=True)\n File "/home/fengchao.pfc/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/sparse_ops.py", line 845, in sparse_tensor_to_dense\n name=name)\n File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/sparse_ops.py", line 710, in sparse_to_dense\n name=name)\n File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/ops/gen_sparse_ops.py", line 1094, in _sparse_to_dense\n validate_indices=validate_indices, name=name)\n File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 767, in apply_op\n op_def=op_def)\n File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2506, in create_op\n original_op=self._default_original_op, op_def=op_def)\n File "/home/mypath/anaconda2/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1269, in __init__\n self._traceback = _extract_stack()\n\nInvalidArgumentError (see above for traceback): indices[1] = [1,2] is out of order\n[[Node: SparseToDense = SparseToDense[T=DT_FLOAT, Tindices=DT_INT64, validate_indices=true, _device="/job:localhost/replica:0/task:0/cpu:0"](_arg_Placeholder_4_0_2, _arg_Placeholder_2_0_0, _arg_Placeholder_3_0_1, SparseToDense/default_value)]]\n
\n\nThank you all for helping me!
\n'I am using tf.estimator.train_and_evaluate
and tf.data.Dataset
to feed data to the estimator:
Input Data function:
\n\n def data_fn(data_dict, batch_size, mode, num_epochs=10):\n dataset = {}\n if mode == tf.estimator.ModeKeys.TRAIN:\n dataset = tf.data.Dataset.from_tensor_slices(data_dict['train_data'].astype(np.float32))\n dataset = dataset.cache()\n dataset = dataset.shuffle(buffer_size= batch_size * 10).repeat(num_epochs).batch(batch_size)\n else:\n dataset = tf.data.Dataset.from_tensor_slices(data_dict['valid_data'].astype(np.float32))\n dataset = dataset.cache()\n dataset = dataset.batch(batch_size)\n\n iterator = dataset.make_one_shot_iterator()\n next_element = iterator.get_next()\n\n return next_element\n
\n\nTrain Function:
\n\ndef train_model(data):\n tf.logging.set_verbosity(tf.logging.INFO)\n config = tf.ConfigProto(allow_soft_placement=True,\n log_device_placement=False)\n config.gpu_options.allow_growth = True\n run_config = tf.contrib.learn.RunConfig(\n save_checkpoints_steps=10,\n keep_checkpoint_max=10,\n session_config=config\n )\n\n train_input = lambda: data_fn(data, 100, tf.estimator.ModeKeys.TRAIN, num_epochs=1)\n eval_input = lambda: data_fn(data, 1000, tf.estimator.ModeKeys.EVAL)\n estimator = tf.estimator.Estimator(model_fn=model_fn, params=hps, config=run_config)\n train_spec = tf.estimator.TrainSpec(train_input, max_steps=100)\n eval_spec = tf.estimator.EvalSpec(eval_input,\n steps=None,\n throttle_secs = 30)\n\n tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)\n
\n\nThe training goes fine, but when it comes to evaluation I get this error:
\n\nOutOfRangeError (see above for traceback): End of sequence \n
\n\nIf I don't use Dataset.batch
on evaluation dataset (by omitting the line dataset[name] = dataset[name].batch(batch_size)
in data_fn
) I get the same error but after a much longer time.
I can only avoid this error if I don't batch the data and use steps=1
for evaluation, but does that perform the evaluation on the whole dataset?
I don't understand what causes this error as the documentation suggests I should be able to evaluate on batches too.
\n\nNote: I get the same error when using tf.estimator.evaluate
on data batches.
I\'m working on a project where I have trained a series of binary classifiers with Keras, with Tensorflow as the backend engine. The input data I have is a series of images, where each binary classifier must make the prediction on the images, later I save the predictions on a CSV file.
\nThe problem I have is when I get the predictions from the first series of binary classifiers there isn\'t any warning, but when the 5th or 6th binary classifier calls the method predict on the input data I get the following warning:
\n\n\nWARNING:tensorflow:5 out of the last 5 calls to <function\nModel.make_predict_function..predict_function at\n0x2b280ff5c158> triggered tf.function retracing. Tracing is expensive\nand the excessive number of tracings could be due to (1) creating\n@tf.function repeatedly in a loop, (2) passing tensors with different\nshapes, (3) passing Python objects instead of tensors. For (1), please\ndefine your @tf.function outside of the loop. For (2), @tf.function\nhas experimental_relax_shapes=True option that relaxes argument shapes\nthat can avoid unnecessary retracing. For (3), please refer to\nhttps://www.tensorflow.org/tutorials/customization/performance#python_or_tensor_args\nand https://www.tensorflow.org/api_docs/python/tf/function for more\ndetails.
\n
To answer each point in the parenthesis, here are my answers:
\nI have debugged my program and found that this warning always happens when the method predict is called. To summarize the code I have written is the following:
\nimport cv2 as cv\nimport tensorflow as tf\nfrom tensorflow.keras.models import load_model\n# Load the models\nbinary_classifiers = [load_model(path) for path in path2models]\n# Get the images\nimages = [#Load the images with OpenCV]\n# Apply the resizing and reshapes on the images.\nmy_list = list()\nfor image in images:\n image_reworked = # Apply the resizing and reshaping on images\n my_list.append(image_reworked)\n\n# Get the prediction from each model\n# This is where I get the warning\npredictions = [model.predict(x=my_list,verbose=0) for model in binary_classifiers]\n
\nI have defined a function as tf.function and putted the code of the predictions inside the tf.function like this
\n@tf.function\ndef testing(models, faces):\n return [model.predict(x=faces,verbose=0) for model in models]\n
\nBut I ended up getting the following error:
\n\n\nRuntimeError: Detected a call to
\nModel.predict
inside a\ntf.function
. Model.predict is a high-level endpoint that manages\nits owntf.function
. Please move the call toModel.predict
outside\nof all enclosingtf.function
s. Note that you can call aModel
\ndirectly on Tensors inside atf.function
like:model(x)
.
So calling the method predict
is basically already a tf.function. So it\'s useless to define a tf.function when the warning I get it\'s from that method.
I have also checked those other two questions:
\nBut neither of the two questions answers my question about how to avoid this warning. Plus I have also checked the links in the warning message but I couldn\'t solve my problem.
\nI simply want to avoid this warning. While I\'m still getting the predictions from the models I noticed that the python program takes way too much time on doing predictions for a list of images.
\nAfter some tries to suppress the warning from the predict
method, I have checked the documentation of Tensorflow and in one of the first tutorials on how to use Tensorflow it is explained that, by default, Tensorflow is executed in eager mode, which is useful for testing and debugging the network models. Since I have already tested my models many times, it was only required to disable the eager mode by writing this single python line of code:
tf.compat.v1.disable_eager_execution()
Now the warning doesn\'t show up anymore.
\n'I try to export a Tensorflow model but I can not find the best way to add the exogenous feature to the tf.contrib.timeseries.StructuralEnsembleRegressor.build_raw_serving_input_receiver_fn
.
I use the sample from the Tensorflow contrib: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/timeseries/examples/known_anomaly.py and I just try to save the model.
\n\n# this is the exogenous column \nstring_feature = tf.contrib.layers.sparse_column_with_keys(\n column_name="is_changepoint", keys=["no", "yes"])\n\none_hot_feature = tf.contrib.layers.one_hot_column(\n sparse_id_column=string_feature)\n\nestimator = tf.contrib.timeseries.StructuralEnsembleRegressor(\n periodicities=12, \n cycle_num_latent_values=3,\n num_features=1,\n exogenous_feature_columns=[one_hot_feature],\n exogenous_update_condition=\n lambda times, features: tf.equal(features["is_changepoint"], "yes"))\n\nreader = tf.contrib.timeseries.CSVReader(\n csv_file_name,\n\n column_names=(tf.contrib.timeseries.TrainEvalFeatures.TIMES,\n tf.contrib.timeseries.TrainEvalFeatures.VALUES,\n "is_changepoint"),\n\n column_dtypes=(tf.int64, tf.float32, tf.string),\n\n skip_header_lines=1)\n\ntrain_input_fn = tf.contrib.timeseries.RandomWindowInputFn(reader, batch_size=4, window_size=64)\nestimator.train(input_fn=train_input_fn, steps=train_steps)\nevaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader)\nevaluation = estimator.evaluate(input_fn=evaluation_input_fn, steps=1)\n\nexport_directory = tempfile.mkdtemp()\n\n###################################################### \n# the exogenous column must be provided to the build_raw_serving_input_receiver_fn. \n# But How ?\n######################################################\n\ninput_receiver_fn = estimator.build_raw_serving_input_receiver_fn()\n# -> error missing \'is_changepoint\' key \n\n#input_receiver_fn = estimator.build_raw_serving_input_receiver_fn({\'is_changepoint\' : string_feature}) \n# -> cast exception\n\nexport_location = estimator.export_savedmodel(export_directory, input_receiver_fn)\n
\n\nAccording to the documentation, build_raw_serving_input_receiver_fn exogenous_features parameter : A dictionary mapping feature keys to exogenous features (either Numpy arrays or Tensors). Used to determine the shapes of placeholders for these features.
\n\nSo what is the best way to transform the one_hot_column or sparse_column_with_keys to a Tensor object ?
\n'I am currently working on an optical flow project and I come across a strange error.
\n\nI have uint16 images stored in bytes in my TFrecords. When I read the TFrecords from my local machine it is giving me uint16 values, but when I deploy the same code and read it from the docker I am getting uint8 values eventhough my dtype is uint16. I mean the uint16 values are getting reduced to uint8 like 32768 --> 128.
\n\nWhat is causing this error?
\n\nMy local machine has: Tensorflow 1.10.1 and python 3.6\nMy Docker Image has: Tensorflow 1.12.0 and python 3.5
\n\nI am working on tensorflow object detection API\nWhile creating the TF records I use:
\n\nwith tf.gfile.GFile(flows, 'rb') as fid:\n flow_images = fid.read()\n
\n\nWhile reading it back I am using: tf.image.decoderaw
\n\nDataset: KITTI FLOW 2015
\n"In the documentation it seems they focus on how to save and restore tf.keras.models, but i was wondering how do you save and restore models trained customly through some basic iteration loop?
Now that there isnt a graph or a session, how do we save structure defined in a tf function that is customly built without using layer abstractions?
") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:---------|:-----| | Word count | 15 | 330.0667 | 3755 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 450 | | 1 | 450 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (1, 16) - max_steps: -1 - sampling_strategy: unique - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - max_length: 256 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:---------:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2951 | - | | **1.0** | **25341** | **0.0** | **0.2473** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 2.5.0 - Transformers: 4.38.1 - PyTorch: 2.1.2 - Datasets: 2.17.1 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```