--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b0-finetuned-test results: [] --- # segformer-b0-finetuned-test This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2053 - eval_mean_iou: 0.5448 - eval_mean_accuracy: 0.6296 - eval_overall_accuracy: 0.9130 - eval_accuracy_Structure (dimensional): nan - eval_accuracy_Impervious (planiform): 0.9578 - eval_accuracy_Fences: 0.3758 - eval_accuracy_Water Storage/Tank: nan - eval_accuracy_Pool < 100 sqft: 0.0 - eval_accuracy_Pool > 100 sqft: 0.8208 - eval_accuracy_Irrigated Planiform: 0.8708 - eval_accuracy_Irrigated Dimensional Low: 0.6817 - eval_accuracy_Irrigated Dimensional High: 0.9472 - eval_accuracy_Irrigated Bare: 0.4827 - eval_accuracy_Irrigable Planiform: 0.6668 - eval_accuracy_Irrigable Dimensional Low: 0.6013 - eval_accuracy_Irrigable Dimensional High: 0.7902 - eval_accuracy_Irrigable Bare: 0.5657 - eval_accuracy_Native Planiform: 0.9093 - eval_accuracy_Native Dimensional Low: 0.0 - eval_accuracy_Native Dimensional High: 0.0961 - eval_accuracy_Native Bare: 0.9332 - eval_accuracy_UDL: nan - eval_accuracy_Open Water: 0.6613 - eval_accuracy_Artificial Turf: 0.9720 - eval_iou_Structure (dimensional): 0.0 - eval_iou_Impervious (planiform): 0.8964 - eval_iou_Fences: 0.3104 - eval_iou_Water Storage/Tank: nan - eval_iou_Pool < 100 sqft: 0.0 - eval_iou_Pool > 100 sqft: 0.8199 - eval_iou_Irrigated Planiform: 0.7563 - eval_iou_Irrigated Dimensional Low: 0.5480 - eval_iou_Irrigated Dimensional High: 0.8920 - eval_iou_Irrigated Bare: 0.4053 - eval_iou_Irrigable Planiform: 0.6007 - eval_iou_Irrigable Dimensional Low: 0.5083 - eval_iou_Irrigable Dimensional High: 0.7595 - eval_iou_Irrigable Bare: 0.5106 - eval_iou_Native Planiform: 0.8678 - eval_iou_Native Dimensional Low: 0.0 - eval_iou_Native Dimensional High: 0.0961 - eval_iou_Native Bare: 0.8293 - eval_iou_UDL: nan - eval_iou_Open Water: 0.5929 - eval_iou_Artificial Turf: 0.9584 - eval_runtime: 6.2852 - eval_samples_per_second: 15.91 - eval_steps_per_second: 1.114 - epoch: 10.8 - step: 270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1