Update README.md
Browse files
README.md
CHANGED
@@ -1,30 +1,116 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
-
base_model: openai/whisper-tiny
|
4 |
-
tags:
|
5 |
-
- generated_from_trainer
|
6 |
-
metrics:
|
7 |
-
- wer
|
8 |
-
model-index:
|
9 |
-
- name: whisper-tiny-bn
|
10 |
-
results: []
|
11 |
language:
|
|
|
12 |
- bn
|
|
|
|
|
|
|
13 |
pipeline_tag: automatic-speech-recognition
|
14 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
16 |
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
It achieves the following results on the evaluation set:
|
21 |
-
- Loss: 0.4041
|
22 |
-
- Wer: 74.0213
|
23 |
|
|
|
|
|
24 |
|
25 |
-
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
- Datasets 2.14.5
|
30 |
-
- Tokenizers 0.13.3
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
language:
|
4 |
+
- en
|
5 |
- bn
|
6 |
+
metrics:
|
7 |
+
- wer
|
8 |
+
library_name: transformers
|
9 |
pipeline_tag: automatic-speech-recognition
|
10 |
---
|
11 |
+
## Results
|
12 |
+
- WER 74
|
13 |
+
|
14 |
+
# Use with [BanglaSpeech2text](https://github.com/shhossain/BanglaSpeech2Text)
|
15 |
+
|
16 |
+
## Test it in Google Colab
|
17 |
+
- [](https://colab.research.google.com/github/shhossain/BanglaSpeech2Text/blob/main/BanglaSpeech2Text_in_Colab.ipynb)
|
18 |
+
|
19 |
+
## Installation
|
20 |
+
You can install the library using pip:
|
21 |
+
|
22 |
+
```bash
|
23 |
+
pip install banglaspeech2text
|
24 |
+
```
|
25 |
+
|
26 |
+
## Usage
|
27 |
+
### Model Initialization
|
28 |
+
To use the library, you need to initialize the Speech2Text class with the desired model. By default, it uses the "base" model, but you can choose from different pre-trained models: "tiny", "small", "medium", "base", or "large". Here's an example:
|
29 |
+
|
30 |
+
```python
|
31 |
+
from banglaspeech2text import Speech2Text
|
32 |
+
|
33 |
+
stt = Speech2Text(model="shhossain/whisper-tiny-bn")
|
34 |
+
```
|
35 |
+
|
36 |
+
### Transcribing Audio Files
|
37 |
+
You can transcribe an audio file by calling the transcribe method and passing the path to the audio file. It will return the transcribed text as a string. Here's an example:
|
38 |
+
|
39 |
+
```python
|
40 |
+
transcription = stt.transcribe("audio.wav")
|
41 |
+
print(transcription)
|
42 |
+
```
|
43 |
+
|
44 |
+
### Use with SpeechRecognition
|
45 |
+
You can use [SpeechRecognition](https://pypi.org/project/SpeechRecognition/) package to get audio from microphone and transcribe it. Here's an example:
|
46 |
+
```python
|
47 |
+
import speech_recognition as sr
|
48 |
+
from banglaspeech2text import Speech2Text
|
49 |
+
|
50 |
+
stt = Speech2Text(model="shhossain/whisper-tiny-bn")
|
51 |
+
|
52 |
+
r = sr.Recognizer()
|
53 |
+
with sr.Microphone() as source:
|
54 |
+
print("Say something!")
|
55 |
+
audio = r.listen(source)
|
56 |
+
output = stt.recognize(audio)
|
57 |
+
|
58 |
+
print(output)
|
59 |
+
```
|
60 |
+
|
61 |
+
### Use GPU
|
62 |
+
You can use GPU for faster inference. Here's an example:
|
63 |
+
```python
|
64 |
+
|
65 |
+
stt = Speech2Text(model="shhossain/whisper-tiny-bn",use_gpu=True)
|
66 |
+
|
67 |
+
```
|
68 |
+
### Advanced GPU Usage
|
69 |
+
For more advanced GPU usage you can use `device` or `device_map` parameter. Here's an example:
|
70 |
+
```python
|
71 |
+
stt = Speech2Text(model="shhossain/whisper-tiny-bn",device="cuda:0")
|
72 |
+
```
|
73 |
+
```python
|
74 |
+
stt = Speech2Text(model="shhossain/whisper-tiny-bn",device_map="auto")
|
75 |
+
```
|
76 |
+
__NOTE__: Read more about [Pytorch Device](https://pytorch.org/docs/stable/tensor_attributes.html#torch.torch.device)
|
77 |
+
|
78 |
+
### Instantly Check with gradio
|
79 |
+
You can instantly check the model with gradio. Here's an example:
|
80 |
+
```python
|
81 |
+
from banglaspeech2text import Speech2Text, available_models
|
82 |
+
import gradio as gr
|
83 |
+
|
84 |
+
stt = Speech2Text(model="shhossain/whisper-tiny-bn",use_gpu=True)
|
85 |
+
|
86 |
+
# You can also open the url and check it in mobile
|
87 |
+
gr.Interface(
|
88 |
+
fn=stt.transcribe,
|
89 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
90 |
+
outputs="text").launch(share=True)
|
91 |
+
```
|
92 |
+
|
93 |
+
__Note__: For more usecases and models -> [BanglaSpeech2Text](https://github.com/shhossain/BanglaSpeech2Text)
|
94 |
+
|
95 |
+
# Use with transformers
|
96 |
+
### Installation
|
97 |
+
```
|
98 |
+
pip install transformers
|
99 |
+
pip install torch
|
100 |
+
```
|
101 |
|
102 |
+
## Usage
|
103 |
|
104 |
+
### Use with file
|
105 |
+
```python
|
106 |
+
from transformers import pipeline
|
107 |
|
108 |
+
pipe = pipeline('automatic-speech-recognition','shhossain/whisper-tiny-bn')
|
|
|
|
|
|
|
109 |
|
110 |
+
def transcribe(audio_path):
|
111 |
+
return pipe(audio_path)['text']
|
112 |
|
113 |
+
audio_file = "test.wav"
|
114 |
|
115 |
+
print(transcribe(audio_file))
|
116 |
+
```
|
|
|
|