alih commited on
Commit
db8168a
1 Parent(s): 650219d

Update model name

Browse files
Files changed (2) hide show
  1. README.md +18 -7
  2. config.json +1 -1
README.md CHANGED
@@ -14,7 +14,7 @@ widget:
14
  example_title: Palace
15
  ---
16
 
17
- # NAT (mini variant)
18
 
19
  NAT-Mini trained on ImageNet-1K at 224x224 resolution.
20
  It was introduced in the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer).
@@ -38,20 +38,20 @@ NA is implemented in PyTorch implementations through its extension, [NATTEN](htt
38
  You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=nat) to look for
39
  fine-tuned versions on a task that interests you.
40
 
41
- ### How to use
42
 
43
- Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
44
 
45
  ```python
46
- from transformers import AutoFeatureExtractor, NATForImageClassification
47
  from PIL import Image
48
  import requests
49
 
50
  url = "http://images.cocodataset.org/val2017/000000039769.jpg"
51
  image = Image.open(requests.get(url, stream=True).raw)
52
 
53
- feature_extractor = AutoFeatureExtractor.from_pretrained("shi-labs/nat-mini-in1k-224")
54
- model = NATForImageClassification.from_pretrained("shi-labs/nat-mini-in1k-224")
55
 
56
  inputs = feature_extractor(images=image, return_tensors="pt")
57
  outputs = model(**inputs)
@@ -61,7 +61,18 @@ predicted_class_idx = logits.argmax(-1).item()
61
  print("Predicted class:", model.config.id2label[predicted_class_idx])
62
  ```
63
 
64
- For more code examples, we refer to the [documentation](https://huggingface.co/transformers/model_doc/nat.html#).
 
 
 
 
 
 
 
 
 
 
 
65
 
66
  ### BibTeX entry and citation info
67
 
 
14
  example_title: Palace
15
  ---
16
 
17
+ # NAT (mini variant)
18
 
19
  NAT-Mini trained on ImageNet-1K at 224x224 resolution.
20
  It was introduced in the paper [Neighborhood Attention Transformer](https://arxiv.org/abs/2204.07143) by Hassani et al. and first released in [this repository](https://github.com/SHI-Labs/Neighborhood-Attention-Transformer).
 
38
  You can use the raw model for image classification. See the [model hub](https://huggingface.co/models?search=nat) to look for
39
  fine-tuned versions on a task that interests you.
40
 
41
+ ### Example
42
 
43
+ Here is how to use this model to classify an image from the COCO 2017 dataset into one of the 1,000 ImageNet classes:
44
 
45
  ```python
46
+ from transformers import AutoImageProcessor, NatForImageClassification
47
  from PIL import Image
48
  import requests
49
 
50
  url = "http://images.cocodataset.org/val2017/000000039769.jpg"
51
  image = Image.open(requests.get(url, stream=True).raw)
52
 
53
+ feature_extractor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
54
+ model = NatForImageClassification.from_pretrained("shi-labs/nat-mini-in1k-224")
55
 
56
  inputs = feature_extractor(images=image, return_tensors="pt")
57
  outputs = model(**inputs)
 
61
  print("Predicted class:", model.config.id2label[predicted_class_idx])
62
  ```
63
 
64
+ For more examples, please refer to the [documentation](https://huggingface.co/transformers/model_doc/nat.html#).
65
+
66
+ ### Requirements
67
+ Other than transformers, this model requires the [NATTEN](https://shi-labs.com/natten) package.
68
+
69
+ If you're on Linux, you can refer to [shi-labs.com/natten](https://shi-labs.com/natten) for instructions on installing with pre-compiled binaries (just select your torch build to get the correct wheel URL).
70
+
71
+ You can alternatively use `pip install natten` to compile on your device, which may take up to a few minutes.
72
+ Mac users only have the latter option (no pre-compiled binaries).
73
+
74
+ Refer to [NATTEN's GitHub](https://github.com/SHI-Labs/NATTEN/) for more information.
75
+
76
 
77
  ### BibTeX entry and citation info
78
 
config.json CHANGED
@@ -1,6 +1,6 @@
1
  {
2
  "architectures": [
3
- "NATForImageClassification"
4
  ],
5
  "attention_probs_dropout_prob": 0.0,
6
  "depths": [
 
1
  {
2
  "architectures": [
3
+ "NatForImageClassification"
4
  ],
5
  "attention_probs_dropout_prob": 0.0,
6
  "depths": [