shicz86 commited on
Commit
0c7d161
·
1 Parent(s): b5ac268

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 241.56 +/- 12.88
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3c0d642160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3c0d6421f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3c0d642280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3c0d642310>", "_build": "<function ActorCriticPolicy._build at 0x7f3c0d6423a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3c0d642430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3c0d6424c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3c0d642550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3c0d6425e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3c0d642670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3c0d642700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3c0d63c630>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670384438388650121, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZEFT7BKwQ/PgRAvtQaeb5kHQk8fbt7PAAAAAAAAAAAmllFPLhx9bsI7U07+vdVPDp4eL3iTDY9AACAPwAAgD/NjPS6nE26P0raAL2MAIc+TYELO3bW5jsAAAAAAAAAAGac1jzSluq74IYDPPdbmjzA9Ja8wvq5uwAAgD8AAIA/mkt1veEYkLojdaE7d7pKtV7HxzoK8SK0AACAPwAAgD+zRBw9pNBYuXW9SruNNCi2E7oWu9a0cDoAAIA/AACAP4C82L1rxZQ/KciNvZLNgL7rTy++cx7pPAAAAAAAAAAAzRQUvbhe5LkN44u7/s+UOCgXGbv1GRw6AACAPwAAgD+zuRW+h6A5P5pAnTxv7n2+tI9Qvfu04D0AAAAAAAAAAPPqjD24npK3ZrjlvKBwlDYuTD673JMMtgAAgD8AAIA/zbytvTZfIT17vhk+ScYtvpG89Tx44j28AAAAAAAAAAAzVdA8hWvZuX94A7zjZiczfix6u3CsVrMAAIA/AACAPzMbyLspIF26yl5cOtzngzU78Km63D6AuQAAgD8AAIA/WhfHPYgVoT6SK948VuswvqpgCT02EQ89AAAAAAAAAADmFYE9KcA4up0D4joaN9I1sKXSucsGBroAAIA/AACAPwDcYb32iEq66BvcOIBAszLsdSu77r7/twAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUFH1Kx2TZUCUhpRSlIwBbJRN6AOMAXSUR0CQ/mTCLuQZdX2UKGgGaAloD0MIg8DKocX8YkCUhpRSlGgVTegDaBZHQJEDbDBMzuZ1fZQoaAZoCWgPQwjdJAaBlVRkQJSGlFKUaBVN6ANoFkdAkQUlbeMyanV9lChoBmgJaA9DCFRTknW47GZAlIaUUpRoFU3oA2gWR0CRBoBHkLhKdX2UKGgGaAloD0MIkunQ6XlFV0CUhpRSlGgVTegDaBZHQJEPctGus911fZQoaAZoCWgPQwhA2ZQrvGVgQJSGlFKUaBVN6ANoFkdAkRDruhK15XV9lChoBmgJaA9DCEfKFkm7uUVAlIaUUpRoFU0aAWgWR0CRF2JOFg2IdX2UKGgGaAloD0MIKsb5m9BOY0CUhpRSlGgVTegDaBZHQJEbWZQYUFl1fZQoaAZoCWgPQwjgha3ZyphdQJSGlFKUaBVN6ANoFkdAkR7s4HX2/XV9lChoBmgJaA9DCKwBSkMNKGFAlIaUUpRoFU3oA2gWR0CRJWeEZiuudX2UKGgGaAloD0MI+wPltn2CXECUhpRSlGgVTegDaBZHQJEnwEEC/491fZQoaAZoCWgPQwi3YRQEj8NYQJSGlFKUaBVN6ANoFkdAkTS6+ajN6nV9lChoBmgJaA9DCBBdUN+y/GBAlIaUUpRoFU3oA2gWR0CRNXtDUmUodX2UKGgGaAloD0MIqgoNxLJRYkCUhpRSlGgVTegDaBZHQJE2TyAhB7h1fZQoaAZoCWgPQwhsWikE8qVmQJSGlFKUaBVN6ANoFkdAkTc1r6+FlHV9lChoBmgJaA9DCM+EJoklUGRAlIaUUpRoFU3oA2gWR0CRO9mbsniOdX2UKGgGaAloD0MI7Q4pBkhuU0CUhpRSlGgVTegDaBZHQJE+FNGmUGF1fZQoaAZoCWgPQwhRiIBDqHdZQJSGlFKUaBVN6ANoFkdAkT8k1EVnEnV9lChoBmgJaA9DCJeo3hrYPmRAlIaUUpRoFU3oA2gWR0CRVi7j1f3OdX2UKGgGaAloD0MIsaVHU70xZECUhpRSlGgVTegDaBZHQJFZFhpg1FZ1fZQoaAZoCWgPQwjLvcCs0F5hQJSGlFKUaBVN6ANoFkdAkWIgzk6tDHV9lChoBmgJaA9DCN47akwIb2ZAlIaUUpRoFU3oA2gWR0CRY6irT6SDdX2UKGgGaAloD0MIQWFQplHaZECUhpRSlGgVTegDaBZHQJFqeisXBP91fZQoaAZoCWgPQwh4YtaLoQJkQJSGlFKUaBVN6ANoFkdAkW7chLXcxnV9lChoBmgJaA9DCItwk1HlTWJAlIaUUpRoFU3oA2gWR0CRcpU70WdmdX2UKGgGaAloD0MIpgux+qNGY0CUhpRSlGgVTegDaBZHQJF5O0BwMph1fZQoaAZoCWgPQwhDHVa45QtfQJSGlFKUaBVN6ANoFkdAkXvaT0QK8nV9lChoBmgJaA9DCAn6Cz1ig19AlIaUUpRoFU3oA2gWR0CRikCGvfTDdX2UKGgGaAloD0MI41C/C1s5ZUCUhpRSlGgVTegDaBZHQJGLGZx7zCl1fZQoaAZoCWgPQwgJbqRskflkQJSGlFKUaBVN6ANoFkdAkYwEmD15B3V9lChoBmgJaA9DCNqOqbuyhmRAlIaUUpRoFU3oA2gWR0CRjPUhV2iddX2UKGgGaAloD0MIRfC/lexJY0CUhpRSlGgVTegDaBZHQJGR5nZkCmx1fZQoaAZoCWgPQwiGV5I8V0pjQJSGlFKUaBVN6ANoFkdAkZQn3g1m8XV9lChoBmgJaA9DCF/uk6MAtl5AlIaUUpRoFU3oA2gWR0CRlVqgyuZDdX2UKGgGaAloD0MIEw8om/KeZECUhpRSlGgVTegDaBZHQJGstyWAwwl1fZQoaAZoCWgPQwih2uBE9JdhQJSGlFKUaBVN6ANoFkdAka/Ms+V1OnV9lChoBmgJaA9DCC/E6o+whWJAlIaUUpRoFU3oA2gWR0CRuVXWOIZZdX2UKGgGaAloD0MIizbHuc1aY0CUhpRSlGgVTegDaBZHQJG65MM7U5N1fZQoaAZoCWgPQwhLyAc9mx1kQJSGlFKUaBVN6ANoFkdAkcINtqHoHXV9lChoBmgJaA9DCB07qMT15mBAlIaUUpRoFU3oA2gWR0CRxfeYUnG9dX2UKGgGaAloD0MItfzAVZ7sZUCUhpRSlGgVTegDaBZHQJHJXc+JP691fZQoaAZoCWgPQwhJ9Z1fFOVjQJSGlFKUaBVN6ANoFkdAkc+5XQtz0nV9lChoBmgJaA9DCNbm/1VHAV9AlIaUUpRoFU3oA2gWR0CR0jDOTq0MdX2UKGgGaAloD0MIya60jNSKZkCUhpRSlGgVTegDaBZHQJHevied07t1fZQoaAZoCWgPQwh+xoUDocBiQJSGlFKUaBVN6ANoFkdAkd95o4+8oXV9lChoBmgJaA9DCNzwu+mWRWZAlIaUUpRoFU3oA2gWR0CR4FaHKwIMdX2UKGgGaAloD0MIfo/665WMZkCUhpRSlGgVTegDaBZHQJHhOaRZED11fZQoaAZoCWgPQwhv1XWoJp5hQJSGlFKUaBVN6ANoFkdAkeYhtDUmUnV9lChoBmgJaA9DCEbrqGoCIWFAlIaUUpRoFU3oA2gWR0CR6FJQLux9dX2UKGgGaAloD0MId0gxQKLeX0CUhpRSlGgVTegDaBZHQJHpUcdYGMZ1fZQoaAZoCWgPQwhnfjUHCGBcQJSGlFKUaBVN6ANoFkdAkgBgrtmcv3V9lChoBmgJaA9DCBK9jGI5gmFAlIaUUpRoFU3oA2gWR0CSA1np0OmSdX2UKGgGaAloD0MIb/QxHxAuX0CUhpRSlGgVTegDaBZHQJINFqJuVHF1fZQoaAZoCWgPQwgcfcwHhHBlQJSGlFKUaBVN6ANoFkdAkg7loL5RCXV9lChoBmgJaA9DCPX1fM1ypFtAlIaUUpRoFU3oA2gWR0CSFlgTyrggdX2UKGgGaAloD0MIgdB6+DKVXkCUhpRSlGgVTegDaBZHQJIay9AX2uh1fZQoaAZoCWgPQwjECUyndcpgQJSGlFKUaBVN6ANoFkdAkh7HqNZNf3V9lChoBmgJaA9DCI7nM6De4GFAlIaUUpRoFU3oA2gWR0CSJlZAIIGAdX2UKGgGaAloD0MIA7ABEeLWYUCUhpRSlGgVTegDaBZHQJIpBsANoal1fZQoaAZoCWgPQwiNs+kIYBViQJSGlFKUaBVN6ANoFkdAkjc1h9b5dnV9lChoBmgJaA9DCDNv1XUommRAlIaUUpRoFU3oA2gWR0CSOAkfs/pudX2UKGgGaAloD0MIcaq1MAtyXECUhpRSlGgVTegDaBZHQJI44+5e7cx1fZQoaAZoCWgPQwhaLbDHRFxaQJSGlFKUaBVN6ANoFkdAkjnXavicXnV9lChoBmgJaA9DCFHbhlGQG2RAlIaUUpRoFU3oA2gWR0CSPmim2sq8dX2UKGgGaAloD0MIHsAiv35mXkCUhpRSlGgVTegDaBZHQJJAcqEvkBF1fZQoaAZoCWgPQwgwurw53IhjQJSGlFKUaBVN6ANoFkdAkkFz0HyEtnV9lChoBmgJaA9DCK29T1Whm2NAlIaUUpRoFU3oA2gWR0CSRb1yvLX+dX2UKGgGaAloD0MIRpkNMsmiZECUhpRSlGgVTegDaBZHQJJatbyH2yt1fZQoaAZoCWgPQwjG3SBaK4NkQJSGlFKUaBVN6ANoFkdAkmNMH0K7ZnV9lChoBmgJaA9DCNYfYRgwtWJAlIaUUpRoFU3oA2gWR0CSZK5Etuk2dX2UKGgGaAloD0MISBgGLLnZXECUhpRSlGgVTegDaBZHQJJrR9YwIt11fZQoaAZoCWgPQwgVHcnlP79fQJSGlFKUaBVN6ANoFkdAkm9IlUp/gHV9lChoBmgJaA9DCCvCTUaVLWRAlIaUUpRoFU3oA2gWR0CScrxusLfDdX2UKGgGaAloD0MIEcR5OIE1XkCUhpRSlGgVTegDaBZHQJJ5upzcRDl1fZQoaAZoCWgPQwhZ2qm53FlhQJSGlFKUaBVN6ANoFkdAknxsRpUPx3V9lChoBmgJaA9DCBHfiVmv42FAlIaUUpRoFU3oA2gWR0CSizew9q1xdX2UKGgGaAloD0MIwYu+gjT6YUCUhpRSlGgVTegDaBZHQJKMFH+ZPVN1fZQoaAZoCWgPQwhxkXu6Or5gQJSGlFKUaBVN6ANoFkdAkoz++M6zV3V9lChoBmgJaA9DCGQfZFmwpmdAlIaUUpRoFU3oA2gWR0CSjfvdM0xedX2UKGgGaAloD0MI6LzGLlHZX0CUhpRSlGgVTegDaBZHQJKSzK2a2F51fZQoaAZoCWgPQwi3DDhLybJkQJSGlFKUaBVN6ANoFkdAkpUHIyTINnV9lChoBmgJaA9DCPfnoiFjdGZAlIaUUpRoFU3oA2gWR0CSlhclw97odX2UKGgGaAloD0MIdJXurrOmXkCUhpRSlGgVTegDaBZHQJKa/G6wt8N1fZQoaAZoCWgPQwhgAyLElUBfQJSGlFKUaBVN6ANoFkdAkrWCCrcTJ3V9lChoBmgJaA9DCBVzEHQ0ZWRAlIaUUpRoFU3oA2gWR0CSv0iG34KydX2UKGgGaAloD0MIZmfRO5VhZECUhpRSlGgVTegDaBZHQJLA2xlg+hZ1fZQoaAZoCWgPQwj8+4wLh1RlQJSGlFKUaBVN6ANoFkdAkseMNc4YJnV9lChoBmgJaA9DCD1JumZyYGBAlIaUUpRoFU3oA2gWR0CSy5eN1hb4dX2UKGgGaAloD0MIYvVHGAaiZECUhpRSlGgVTegDaBZHQJLPOXmeUY91fZQoaAZoCWgPQwim8KDZdedhQJSGlFKUaBVN6ANoFkdAktYl7x/d7HV9lChoBmgJaA9DCN47akyIrGBAlIaUUpRoFU3oA2gWR0CS2N1Bt1p1dX2UKGgGaAloD0MI/67PnHXTYUCUhpRSlGgVTegDaBZHQJLmfqNZNfx1fZQoaAZoCWgPQwifIoeIGyZjQJSGlFKUaBVN6ANoFkdAkudBg7YChnV9lChoBmgJaA9DCIW0xqCTOWdAlIaUUpRoFU3oA2gWR0CS6BFYuCf6dX2UKGgGaAloD0MIJxQi4JDDY0CUhpRSlGgVTegDaBZHQJLo92xIJ7d1fZQoaAZoCWgPQwibcK/MW7dhQJSGlFKUaBVN6ANoFkdAku1Oz2OAAnV9lChoBmgJaA9DCIuqX+l8XWdAlIaUUpRoFU3oA2gWR0CS70jbBXS0dX2UKGgGaAloD0MIz77yID28YUCUhpRSlGgVTegDaBZHQJLwPXe3x4J1fZQoaAZoCWgPQwgTDr3FwwlhQJSGlFKUaBVN6ANoFkdAkvRt+LFXJnV9lChoBmgJaA9DCPrxlxZ1JWVAlIaUUpRoFU3oA2gWR0CS9yvkili0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63a98ecc17d38b1a7d9aaa0cbcb7ac7fea04a8a6e92bffa2d2ac4ef663b48e65
3
+ size 147154
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3c0d642160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3c0d6421f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3c0d642280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3c0d642310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f3c0d6423a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f3c0d642430>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3c0d6424c0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f3c0d642550>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3c0d6425e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3c0d642670>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3c0d642700>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f3c0d63c630>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670384438388650121,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACZEFT7BKwQ/PgRAvtQaeb5kHQk8fbt7PAAAAAAAAAAAmllFPLhx9bsI7U07+vdVPDp4eL3iTDY9AACAPwAAgD/NjPS6nE26P0raAL2MAIc+TYELO3bW5jsAAAAAAAAAAGac1jzSluq74IYDPPdbmjzA9Ja8wvq5uwAAgD8AAIA/mkt1veEYkLojdaE7d7pKtV7HxzoK8SK0AACAPwAAgD+zRBw9pNBYuXW9SruNNCi2E7oWu9a0cDoAAIA/AACAP4C82L1rxZQ/KciNvZLNgL7rTy++cx7pPAAAAAAAAAAAzRQUvbhe5LkN44u7/s+UOCgXGbv1GRw6AACAPwAAgD+zuRW+h6A5P5pAnTxv7n2+tI9Qvfu04D0AAAAAAAAAAPPqjD24npK3ZrjlvKBwlDYuTD673JMMtgAAgD8AAIA/zbytvTZfIT17vhk+ScYtvpG89Tx44j28AAAAAAAAAAAzVdA8hWvZuX94A7zjZiczfix6u3CsVrMAAIA/AACAPzMbyLspIF26yl5cOtzngzU78Km63D6AuQAAgD8AAIA/WhfHPYgVoT6SK948VuswvqpgCT02EQ89AAAAAAAAAADmFYE9KcA4up0D4joaN9I1sKXSucsGBroAAIA/AACAPwDcYb32iEq66BvcOIBAszLsdSu77r7/twAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUFH1Kx2TZUCUhpRSlIwBbJRN6AOMAXSUR0CQ/mTCLuQZdX2UKGgGaAloD0MIg8DKocX8YkCUhpRSlGgVTegDaBZHQJEDbDBMzuZ1fZQoaAZoCWgPQwjdJAaBlVRkQJSGlFKUaBVN6ANoFkdAkQUlbeMyanV9lChoBmgJaA9DCFRTknW47GZAlIaUUpRoFU3oA2gWR0CRBoBHkLhKdX2UKGgGaAloD0MIkunQ6XlFV0CUhpRSlGgVTegDaBZHQJEPctGus911fZQoaAZoCWgPQwhA2ZQrvGVgQJSGlFKUaBVN6ANoFkdAkRDruhK15XV9lChoBmgJaA9DCEfKFkm7uUVAlIaUUpRoFU0aAWgWR0CRF2JOFg2IdX2UKGgGaAloD0MIKsb5m9BOY0CUhpRSlGgVTegDaBZHQJEbWZQYUFl1fZQoaAZoCWgPQwjgha3ZyphdQJSGlFKUaBVN6ANoFkdAkR7s4HX2/XV9lChoBmgJaA9DCKwBSkMNKGFAlIaUUpRoFU3oA2gWR0CRJWeEZiuudX2UKGgGaAloD0MI+wPltn2CXECUhpRSlGgVTegDaBZHQJEnwEEC/491fZQoaAZoCWgPQwi3YRQEj8NYQJSGlFKUaBVN6ANoFkdAkTS6+ajN6nV9lChoBmgJaA9DCBBdUN+y/GBAlIaUUpRoFU3oA2gWR0CRNXtDUmUodX2UKGgGaAloD0MIqgoNxLJRYkCUhpRSlGgVTegDaBZHQJE2TyAhB7h1fZQoaAZoCWgPQwhsWikE8qVmQJSGlFKUaBVN6ANoFkdAkTc1r6+FlHV9lChoBmgJaA9DCM+EJoklUGRAlIaUUpRoFU3oA2gWR0CRO9mbsniOdX2UKGgGaAloD0MI7Q4pBkhuU0CUhpRSlGgVTegDaBZHQJE+FNGmUGF1fZQoaAZoCWgPQwhRiIBDqHdZQJSGlFKUaBVN6ANoFkdAkT8k1EVnEnV9lChoBmgJaA9DCJeo3hrYPmRAlIaUUpRoFU3oA2gWR0CRVi7j1f3OdX2UKGgGaAloD0MIsaVHU70xZECUhpRSlGgVTegDaBZHQJFZFhpg1FZ1fZQoaAZoCWgPQwjLvcCs0F5hQJSGlFKUaBVN6ANoFkdAkWIgzk6tDHV9lChoBmgJaA9DCN47akwIb2ZAlIaUUpRoFU3oA2gWR0CRY6irT6SDdX2UKGgGaAloD0MIQWFQplHaZECUhpRSlGgVTegDaBZHQJFqeisXBP91fZQoaAZoCWgPQwh4YtaLoQJkQJSGlFKUaBVN6ANoFkdAkW7chLXcxnV9lChoBmgJaA9DCItwk1HlTWJAlIaUUpRoFU3oA2gWR0CRcpU70WdmdX2UKGgGaAloD0MIpgux+qNGY0CUhpRSlGgVTegDaBZHQJF5O0BwMph1fZQoaAZoCWgPQwhDHVa45QtfQJSGlFKUaBVN6ANoFkdAkXvaT0QK8nV9lChoBmgJaA9DCAn6Cz1ig19AlIaUUpRoFU3oA2gWR0CRikCGvfTDdX2UKGgGaAloD0MI41C/C1s5ZUCUhpRSlGgVTegDaBZHQJGLGZx7zCl1fZQoaAZoCWgPQwgJbqRskflkQJSGlFKUaBVN6ANoFkdAkYwEmD15B3V9lChoBmgJaA9DCNqOqbuyhmRAlIaUUpRoFU3oA2gWR0CRjPUhV2iddX2UKGgGaAloD0MIRfC/lexJY0CUhpRSlGgVTegDaBZHQJGR5nZkCmx1fZQoaAZoCWgPQwiGV5I8V0pjQJSGlFKUaBVN6ANoFkdAkZQn3g1m8XV9lChoBmgJaA9DCF/uk6MAtl5AlIaUUpRoFU3oA2gWR0CRlVqgyuZDdX2UKGgGaAloD0MIEw8om/KeZECUhpRSlGgVTegDaBZHQJGstyWAwwl1fZQoaAZoCWgPQwih2uBE9JdhQJSGlFKUaBVN6ANoFkdAka/Ms+V1OnV9lChoBmgJaA9DCC/E6o+whWJAlIaUUpRoFU3oA2gWR0CRuVXWOIZZdX2UKGgGaAloD0MIizbHuc1aY0CUhpRSlGgVTegDaBZHQJG65MM7U5N1fZQoaAZoCWgPQwhLyAc9mx1kQJSGlFKUaBVN6ANoFkdAkcINtqHoHXV9lChoBmgJaA9DCB07qMT15mBAlIaUUpRoFU3oA2gWR0CRxfeYUnG9dX2UKGgGaAloD0MItfzAVZ7sZUCUhpRSlGgVTegDaBZHQJHJXc+JP691fZQoaAZoCWgPQwhJ9Z1fFOVjQJSGlFKUaBVN6ANoFkdAkc+5XQtz0nV9lChoBmgJaA9DCNbm/1VHAV9AlIaUUpRoFU3oA2gWR0CR0jDOTq0MdX2UKGgGaAloD0MIya60jNSKZkCUhpRSlGgVTegDaBZHQJHevied07t1fZQoaAZoCWgPQwh+xoUDocBiQJSGlFKUaBVN6ANoFkdAkd95o4+8oXV9lChoBmgJaA9DCNzwu+mWRWZAlIaUUpRoFU3oA2gWR0CR4FaHKwIMdX2UKGgGaAloD0MIfo/665WMZkCUhpRSlGgVTegDaBZHQJHhOaRZED11fZQoaAZoCWgPQwhv1XWoJp5hQJSGlFKUaBVN6ANoFkdAkeYhtDUmUnV9lChoBmgJaA9DCEbrqGoCIWFAlIaUUpRoFU3oA2gWR0CR6FJQLux9dX2UKGgGaAloD0MId0gxQKLeX0CUhpRSlGgVTegDaBZHQJHpUcdYGMZ1fZQoaAZoCWgPQwhnfjUHCGBcQJSGlFKUaBVN6ANoFkdAkgBgrtmcv3V9lChoBmgJaA9DCBK9jGI5gmFAlIaUUpRoFU3oA2gWR0CSA1np0OmSdX2UKGgGaAloD0MIb/QxHxAuX0CUhpRSlGgVTegDaBZHQJINFqJuVHF1fZQoaAZoCWgPQwgcfcwHhHBlQJSGlFKUaBVN6ANoFkdAkg7loL5RCXV9lChoBmgJaA9DCPX1fM1ypFtAlIaUUpRoFU3oA2gWR0CSFlgTyrggdX2UKGgGaAloD0MIgdB6+DKVXkCUhpRSlGgVTegDaBZHQJIay9AX2uh1fZQoaAZoCWgPQwjECUyndcpgQJSGlFKUaBVN6ANoFkdAkh7HqNZNf3V9lChoBmgJaA9DCI7nM6De4GFAlIaUUpRoFU3oA2gWR0CSJlZAIIGAdX2UKGgGaAloD0MIA7ABEeLWYUCUhpRSlGgVTegDaBZHQJIpBsANoal1fZQoaAZoCWgPQwiNs+kIYBViQJSGlFKUaBVN6ANoFkdAkjc1h9b5dnV9lChoBmgJaA9DCDNv1XUommRAlIaUUpRoFU3oA2gWR0CSOAkfs/pudX2UKGgGaAloD0MIcaq1MAtyXECUhpRSlGgVTegDaBZHQJI44+5e7cx1fZQoaAZoCWgPQwhaLbDHRFxaQJSGlFKUaBVN6ANoFkdAkjnXavicXnV9lChoBmgJaA9DCFHbhlGQG2RAlIaUUpRoFU3oA2gWR0CSPmim2sq8dX2UKGgGaAloD0MIHsAiv35mXkCUhpRSlGgVTegDaBZHQJJAcqEvkBF1fZQoaAZoCWgPQwgwurw53IhjQJSGlFKUaBVN6ANoFkdAkkFz0HyEtnV9lChoBmgJaA9DCK29T1Whm2NAlIaUUpRoFU3oA2gWR0CSRb1yvLX+dX2UKGgGaAloD0MIRpkNMsmiZECUhpRSlGgVTegDaBZHQJJatbyH2yt1fZQoaAZoCWgPQwjG3SBaK4NkQJSGlFKUaBVN6ANoFkdAkmNMH0K7ZnV9lChoBmgJaA9DCNYfYRgwtWJAlIaUUpRoFU3oA2gWR0CSZK5Etuk2dX2UKGgGaAloD0MISBgGLLnZXECUhpRSlGgVTegDaBZHQJJrR9YwIt11fZQoaAZoCWgPQwgVHcnlP79fQJSGlFKUaBVN6ANoFkdAkm9IlUp/gHV9lChoBmgJaA9DCCvCTUaVLWRAlIaUUpRoFU3oA2gWR0CScrxusLfDdX2UKGgGaAloD0MIEcR5OIE1XkCUhpRSlGgVTegDaBZHQJJ5upzcRDl1fZQoaAZoCWgPQwhZ2qm53FlhQJSGlFKUaBVN6ANoFkdAknxsRpUPx3V9lChoBmgJaA9DCBHfiVmv42FAlIaUUpRoFU3oA2gWR0CSizew9q1xdX2UKGgGaAloD0MIwYu+gjT6YUCUhpRSlGgVTegDaBZHQJKMFH+ZPVN1fZQoaAZoCWgPQwhxkXu6Or5gQJSGlFKUaBVN6ANoFkdAkoz++M6zV3V9lChoBmgJaA9DCGQfZFmwpmdAlIaUUpRoFU3oA2gWR0CSjfvdM0xedX2UKGgGaAloD0MI6LzGLlHZX0CUhpRSlGgVTegDaBZHQJKSzK2a2F51fZQoaAZoCWgPQwi3DDhLybJkQJSGlFKUaBVN6ANoFkdAkpUHIyTINnV9lChoBmgJaA9DCPfnoiFjdGZAlIaUUpRoFU3oA2gWR0CSlhclw97odX2UKGgGaAloD0MIdJXurrOmXkCUhpRSlGgVTegDaBZHQJKa/G6wt8N1fZQoaAZoCWgPQwhgAyLElUBfQJSGlFKUaBVN6ANoFkdAkrWCCrcTJ3V9lChoBmgJaA9DCBVzEHQ0ZWRAlIaUUpRoFU3oA2gWR0CSv0iG34KydX2UKGgGaAloD0MIZmfRO5VhZECUhpRSlGgVTegDaBZHQJLA2xlg+hZ1fZQoaAZoCWgPQwj8+4wLh1RlQJSGlFKUaBVN6ANoFkdAkseMNc4YJnV9lChoBmgJaA9DCD1JumZyYGBAlIaUUpRoFU3oA2gWR0CSy5eN1hb4dX2UKGgGaAloD0MIYvVHGAaiZECUhpRSlGgVTegDaBZHQJLPOXmeUY91fZQoaAZoCWgPQwim8KDZdedhQJSGlFKUaBVN6ANoFkdAktYl7x/d7HV9lChoBmgJaA9DCN47akyIrGBAlIaUUpRoFU3oA2gWR0CS2N1Bt1p1dX2UKGgGaAloD0MI/67PnHXTYUCUhpRSlGgVTegDaBZHQJLmfqNZNfx1fZQoaAZoCWgPQwifIoeIGyZjQJSGlFKUaBVN6ANoFkdAkudBg7YChnV9lChoBmgJaA9DCIW0xqCTOWdAlIaUUpRoFU3oA2gWR0CS6BFYuCf6dX2UKGgGaAloD0MIJxQi4JDDY0CUhpRSlGgVTegDaBZHQJLo92xIJ7d1fZQoaAZoCWgPQwibcK/MW7dhQJSGlFKUaBVN6ANoFkdAku1Oz2OAAnV9lChoBmgJaA9DCIuqX+l8XWdAlIaUUpRoFU3oA2gWR0CS70jbBXS0dX2UKGgGaAloD0MIz77yID28YUCUhpRSlGgVTegDaBZHQJLwPXe3x4J1fZQoaAZoCWgPQwgTDr3FwwlhQJSGlFKUaBVN6ANoFkdAkvRt+LFXJnV9lChoBmgJaA9DCPrxlxZ1JWVAlIaUUpRoFU3oA2gWR0CS9yvkili0dWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f531446f9dcf995925245b87c1136e06102be911e736bae21feb27e26c65c1c7
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0efb4ccb6e19bfb23832f866665473d26e977ac37669b7529789887ac87a6b28
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.15
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (243 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 241.5551517125313, "std_reward": 12.880744457663619, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-07T04:02:03.970226"}