shikhar1997 commited on
Commit
bcb2d90
·
1 Parent(s): 8b884e9

LunarLanderv2 with 1e6 steps and MlpPolicy

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 274.17 +/- 16.14
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f210278f950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f210278f9e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f210278fa70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f210278fb00>", "_build": "<function ActorCriticPolicy._build at 0x7f210278fb90>", "forward": "<function ActorCriticPolicy.forward at 0x7f210278fc20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f210278fcb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f210278fd40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f210278fdd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f210278fe60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f210278fef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f21027caf90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652806970.7909064, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbc0z1YC2E/nwG0PUJA1b7QZQs+2kFZPQAAAAAAAAAALdOTPnEXXD8iYTu9+mX9vr9ojz66ZB2+AAAAAAAAAACaqZ+9g4sQPVm8Hb3kw4W+yIjMPCl7KzwAAAAAAAAAALrCZT5G+gg/ngZVvp4L476yhcu7VvmrvQAAAAAAAAAATTplvYyHxz6vuDk9piSnvjfK5jqq1ks9AAAAAAAAAADauIE9JotEP0FOyDzEF+W+4JZ4PD62Wz0AAAAAAAAAAKBYAj6xnzI+ng9yvnLwhr7VQ7c7NnZmvQAAAAAAAAAAwP7LvSdrCD6apPk9ZM9zvovUWT24J5k8AAAAAAAAAAAQypG+s5kbP4sJLr0pFsa+TkCTvq92IT4AAAAAAAAAABqsKL25vas/euIPv1HrBL9dWig8oFqovQAAAAAAAAAAGgsfvQq+Ybs7Bgq8SwSFPBwVt7yeI2U9AACAPwAAgD8zmVG9QemMvObKWLyjJF08nOb9vdMdND0AAIA/AACAPwC+XTwIEsE+XCTEPcX8mL7IOEY9nkrZPQAAAAAAAAAA5lvkPQbXRT+aD5M9hG/KvvzKPz4+SAM9AAAAAAAAAADaIJM9NLDvPZGeRr71n46+i48wvebanT0AAAAAAAAAAJrhKbwqyFQ+amF1PfrlZb6fCM48ZBqiOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwHYwYh8GcUCUhpRSlIwBbJRNNgGMAXSUR0Cpu3M/hVENdX2UKGgGaAloD0MITz+oixRdckCUhpRSlGgVS+9oFkdAqbuOIsRQJ3V9lChoBmgJaA9DCPruVpYo8HBAlIaUUpRoFUvxaBZHQKm7xT8YQ8R1fZQoaAZoCWgPQwhmbOhmf6pxQJSGlFKUaBVL0WgWR0Cpu8uuq3mWdX2UKGgGaAloD0MI04bD0oD7cUCUhpRSlGgVS+5oFkdAqbwMxsVLz3V9lChoBmgJaA9DCOoFn+bkXHFAlIaUUpRoFUvWaBZHQKm8MNoakyl1fZQoaAZoCWgPQwi7tyIxQT9yQJSGlFKUaBVL5GgWR0CpvLHTiKixdX2UKGgGaAloD0MI/0KPGL0ecUCUhpRSlGgVS9poFkdAqbz7T2FnI3V9lChoBmgJaA9DCHYyOEpeuHFAlIaUUpRoFU0dAWgWR0Cpvg4mkWRBdX2UKGgGaAloD0MIRdYaSm0icUCUhpRSlGgVS95oFkdAqb6cGeMAFXV9lChoBmgJaA9DCFgfD313VlFAlIaUUpRoFUuraBZHQKm+sMm4RVZ1fZQoaAZoCWgPQwjYn8TnDhtxQJSGlFKUaBVNDwFoFkdAqb7J3JPqLXV9lChoBmgJaA9DCOOJIM5DaXFAlIaUUpRoFUv1aBZHQKm/6AIY3vR1fZQoaAZoCWgPQwh+NnLd1JtyQJSGlFKUaBVNFgFoFkdAqb/1UhmoSHV9lChoBmgJaA9DCJDY7h5gb3FAlIaUUpRoFUvcaBZHQKnANpYcNpd1fZQoaAZoCWgPQwjoobYNI4JxQJSGlFKUaBVNCAFoFkdAqcBwV/MGHHV9lChoBmgJaA9DCFCr6A8NcXFAlIaUUpRoFU0NAWgWR0CpwH40uUUxdX2UKGgGaAloD0MIq0IDsSz2cECUhpRSlGgVS/loFkdAqcCEwFkhBHV9lChoBmgJaA9DCNO/JJVpanNAlIaUUpRoFU0rAWgWR0CpwWS/sVtXdX2UKGgGaAloD0MI6ZleYiyPbkCUhpRSlGgVS/9oFkdAqcGPAEdNnHV9lChoBmgJaA9DCL6HS447dW9AlIaUUpRoFUv1aBZHQKnBsVUMoc91fZQoaAZoCWgPQwhj1LX2PsFyQJSGlFKUaBVNIwFoFkdAqcGvWnTAnHV9lChoBmgJaA9DCJyGqMLf/nBAlIaUUpRoFU2hA2gWR0Cpwwl2NedDdX2UKGgGaAloD0MISWQfZJlucECUhpRSlGgVTQMBaBZHQKnDD22XsxB1fZQoaAZoCWgPQwgy5q4lpDdyQJSGlFKUaBVL5GgWR0Cpww7sWweOdX2UKGgGaAloD0MIv2A3bJtScUCUhpRSlGgVTQsBaBZHQKnDzcoH9m91fZQoaAZoCWgPQwhi3A2idW1yQJSGlFKUaBVNHgFoFkdAqcQAISlFdHV9lChoBmgJaA9DCOzbSUS4vHJAlIaUUpRoFUvraBZHQKnEkIEbHZN1fZQoaAZoCWgPQwjqBDQRtu1wQJSGlFKUaBVL32gWR0CpxJr56+nJdX2UKGgGaAloD0MI8djPYqlacECUhpRSlGgVS/5oFkdAqcSnQ+lj3HV9lChoBmgJaA9DCFs//WfN6m9AlIaUUpRoFUv/aBZHQKnEtib2Dg91fZQoaAZoCWgPQwhWD5iHjJVwQJSGlFKUaBVL6WgWR0CpxM4pc5bRdX2UKGgGaAloD0MI0qdV9MeWcECUhpRSlGgVS/9oFkdAqcUcJWvKU3V9lChoBmgJaA9DCDLohNBBoXFAlIaUUpRoFUvgaBZHQKnTGxxkupV1fZQoaAZoCWgPQwhx/5HpEHFwQJSGlFKUaBVL+mgWR0Cp00rKNhmYdX2UKGgGaAloD0MI6UmZ1NAKbUCUhpRSlGgVS/NoFkdAqdNSHmA9V3V9lChoBmgJaA9DCNu/stKkS3BAlIaUUpRoFU0FAWgWR0Cp07xJul41dX2UKGgGaAloD0MIofKv5ZVocECUhpRSlGgVS+loFkdAqdSNmBe5WnV9lChoBmgJaA9DCHrCEg8oe11AlIaUUpRoFU3oA2gWR0Cp1JVPN3W4dX2UKGgGaAloD0MIpkI8Ei8xUUCUhpRSlGgVS6doFkdAqdUayyD7InV9lChoBmgJaA9DCHUdqinJgm9AlIaUUpRoFU0HAWgWR0Cp1RoJZ4fPdX2UKGgGaAloD0MIfuNrzyweVUCUhpRSlGgVS65oFkdAqdUiVdHDrXV9lChoBmgJaA9DCGdGPxoOSHBAlIaUUpRoFU0WAWgWR0Cp1VjoQnQZdX2UKGgGaAloD0MIxlBOtKsNcECUhpRSlGgVS9doFkdAqdWrVUdaMnV9lChoBmgJaA9DCH4YITzaxnJAlIaUUpRoFUv5aBZHQKnVwrGza9N1fZQoaAZoCWgPQwifq63Y33NyQJSGlFKUaBVL9GgWR0Cp1jdS2phndX2UKGgGaAloD0MIHVcju1J3ckCUhpRSlGgVTQMBaBZHQKnWbYDDCP91fZQoaAZoCWgPQwisPIGw0wNxQJSGlFKUaBVNQAFoFkdAqdbJs2vSt3V9lChoBmgJaA9DCCMxQQ3fJXJAlIaUUpRoFUvTaBZHQKnW9oPkJa91fZQoaAZoCWgPQwj7H2CtGrtwQJSGlFKUaBVL5GgWR0Cp1wrULDyfdX2UKGgGaAloD0MIRbx1/u1qcECUhpRSlGgVS/FoFkdAqddlolD4QHV9lChoBmgJaA9DCLOVl/yPVXFAlIaUUpRoFU0lAWgWR0Cp13h86V+rdX2UKGgGaAloD0MI0sQ7wBOZckCUhpRSlGgVS+NoFkdAqdeTvCuU2XV9lChoBmgJaA9DCP6ZQXxg/nBAlIaUUpRoFUvqaBZHQKnYZoX9BKN1fZQoaAZoCWgPQwiqQ26Gm3BxQJSGlFKUaBVNAQFoFkdAqdjbDMvAXXV9lChoBmgJaA9DCI6ULZK20nJAlIaUUpRoFUvxaBZHQKnZHp48lol1fZQoaAZoCWgPQwj3yycrBuRvQJSGlFKUaBVL9GgWR0Cp2WmTcIqtdX2UKGgGaAloD0MISicSTLWkcUCUhpRSlGgVTQUBaBZHQKnZdBLwnYx1fZQoaAZoCWgPQwhcBTHQtZxyQJSGlFKUaBVLyGgWR0Cp2ZRC6YmcdX2UKGgGaAloD0MI6j4AqQ1lcECUhpRSlGgVS/hoFkdAqdnWQjlgdHV9lChoBmgJaA9DCK5JtyXy129AlIaUUpRoFUv4aBZHQKnZ7bPhQ3x1fZQoaAZoCWgPQwia0Y+GE1BwQJSGlFKUaBVNJQFoFkdAqdoB1X/5tXV9lChoBmgJaA9DCPq19dN/D29AlIaUUpRoFUv1aBZHQKnahTm4iHJ1fZQoaAZoCWgPQwgw2A3bloFuQJSGlFKUaBVL8WgWR0Cp2st1hb4bdX2UKGgGaAloD0MIchk3NdDAcECUhpRSlGgVS+toFkdAqdreSntOVXV9lChoBmgJaA9DCCTx8nQu6nJAlIaUUpRoFUv7aBZHQKnbMcaOxSp1fZQoaAZoCWgPQwjxngPLET5vQJSGlFKUaBVL32gWR0Cp2zIKc/dJdX2UKGgGaAloD0MIQ+Vfy2vzcECUhpRSlGgVS/BoFkdAqdtfmDDjznV9lChoBmgJaA9DCBl1rb2P5nFAlIaUUpRoFU0pAWgWR0Cp3IzMaCL/dX2UKGgGaAloD0MIqDY4Ef2kbkCUhpRSlGgVS/1oFkdAqdywbsF+u3V9lChoBmgJaA9DCJhPVgwXgHNAlIaUUpRoFUvgaBZHQKndLMV1wHZ1fZQoaAZoCWgPQwiNJhdjYHRtQJSGlFKUaBVL6mgWR0Cp3WqVhTfjdX2UKGgGaAloD0MIC3va4a8qcECUhpRSlGgVS+ZoFkdAqd17Ccf/3nV9lChoBmgJaA9DCAG/RpJgbXJAlIaUUpRoFUvcaBZHQKndwOinHed1fZQoaAZoCWgPQwg4Ef3aeptxQJSGlFKUaBVNDwFoFkdAqd3C+L3sX3V9lChoBmgJaA9DCPfN/dXjj3JAlIaUUpRoFUv5aBZHQKneLbqyGBZ1fZQoaAZoCWgPQwjJ5T+kH4lwQJSGlFKUaBVNNwFoFkdAqd4zsSkCWHV9lChoBmgJaA9DCHK/Q1FgWXNAlIaUUpRoFUvfaBZHQKneXmV7hNx1fZQoaAZoCWgPQwjB4QUR6eFxQJSGlFKUaBVNIQFoFkdAqd7EzGgi/3V9lChoBmgJaA9DCKn4vyMq4HBAlIaUUpRoFUv8aBZHQKnfNW5H3Dh1fZQoaAZoCWgPQwgSvCGNimZxQJSGlFKUaBVNAwFoFkdAqd8/Vd5Y5nV9lChoBmgJaA9DCKmJPh8lW3FAlIaUUpRoFUvraBZHQKnfR1V5rxl1fZQoaAZoCWgPQwgEAwgfytBuQJSGlFKUaBVL/2gWR0Cp35EF4cFRdX2UKGgGaAloD0MIABx79lzgckCUhpRSlGgVTQkBaBZHQKnf46xxDLN1fZQoaAZoCWgPQwiVnBN7qNhxQJSGlFKUaBVL82gWR0Cp4LcMmWt2dX2UKGgGaAloD0MIe0rOiT07c0CUhpRSlGgVS/RoFkdAqeDfZsbednV9lChoBmgJaA9DCNAmh0/6vHBAlIaUUpRoFU0BAWgWR0Cp4Zq20AtGdX2UKGgGaAloD0MInmLVIAxWckCUhpRSlGgVS/NoFkdAqeGio2n89HV9lChoBmgJaA9DCBo1XyWfJXFAlIaUUpRoFUv/aBZHQKnhy4yXUpd1fZQoaAZoCWgPQwjb/L/qSFJxQJSGlFKUaBVL+WgWR0Cp4gbLMcIadX2UKGgGaAloD0MI+OEgIQrQckCUhpRSlGgVTQ8BaBZHQKnidhWHUMJ1fZQoaAZoCWgPQwgw1GGF2y5xQJSGlFKUaBVL+2gWR0Cp4sP60pmVdX2UKGgGaAloD0MIDLCPTt0hcECUhpRSlGgVTQgBaBZHQKni0NDtw711fZQoaAZoCWgPQwheaRmpN0VxQJSGlFKUaBVNFQFoFkdAqeMDQzDXOHV9lChoBmgJaA9DCDQQy2YO9m9AlIaUUpRoFU0KAWgWR0Cp42XF1jiGdX2UKGgGaAloD0MIuOhkqXXlb0CUhpRSlGgVS/BoFkdAqeN6ckMTe3V9lChoBmgJaA9DCJ4oCYl0lHBAlIaUUpRoFUv4aBZHQKnjiGHpKSR1fZQoaAZoCWgPQwgCRpc3x4VzQJSGlFKUaBVL6WgWR0Cp46nj6vaDdX2UKGgGaAloD0MIZr6Dnzh4cECUhpRSlGgVS/5oFkdAqeOmLxZuAXV9lChoBmgJaA9DCI3uIHaml3BAlIaUUpRoFU0DAWgWR0Cp5GAZ88cNdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96123eaab8d3e5cb5058b8526b0b3214467fe165d2c24de1474b63e7f34892ee
3
+ size 221964
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 274.1655233695334, "std_reward": 16.144033888939102, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T18:09:46.876927"}
shiksriv_moon_lander_ppo_mlpolicy.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b98253886d901eecf7a425ca30c36641a4783c3439da1f59f1a7bfd17101f168
3
+ size 144026
shiksriv_moon_lander_ppo_mlpolicy/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
shiksriv_moon_lander_ppo_mlpolicy/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f210278f950>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f210278f9e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f210278fa70>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f210278fb00>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f210278fb90>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f210278fc20>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f210278fcb0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f210278fd40>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f210278fdd0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f210278fe60>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f210278fef0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f21027caf90>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652806970.7909064,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbc0z1YC2E/nwG0PUJA1b7QZQs+2kFZPQAAAAAAAAAALdOTPnEXXD8iYTu9+mX9vr9ojz66ZB2+AAAAAAAAAACaqZ+9g4sQPVm8Hb3kw4W+yIjMPCl7KzwAAAAAAAAAALrCZT5G+gg/ngZVvp4L476yhcu7VvmrvQAAAAAAAAAATTplvYyHxz6vuDk9piSnvjfK5jqq1ks9AAAAAAAAAADauIE9JotEP0FOyDzEF+W+4JZ4PD62Wz0AAAAAAAAAAKBYAj6xnzI+ng9yvnLwhr7VQ7c7NnZmvQAAAAAAAAAAwP7LvSdrCD6apPk9ZM9zvovUWT24J5k8AAAAAAAAAAAQypG+s5kbP4sJLr0pFsa+TkCTvq92IT4AAAAAAAAAABqsKL25vas/euIPv1HrBL9dWig8oFqovQAAAAAAAAAAGgsfvQq+Ybs7Bgq8SwSFPBwVt7yeI2U9AACAPwAAgD8zmVG9QemMvObKWLyjJF08nOb9vdMdND0AAIA/AACAPwC+XTwIEsE+XCTEPcX8mL7IOEY9nkrZPQAAAAAAAAAA5lvkPQbXRT+aD5M9hG/KvvzKPz4+SAM9AAAAAAAAAADaIJM9NLDvPZGeRr71n46+i48wvebanT0AAAAAAAAAAJrhKbwqyFQ+amF1PfrlZb6fCM48ZBqiOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVPxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwHYwYh8GcUCUhpRSlIwBbJRNNgGMAXSUR0Cpu3M/hVENdX2UKGgGaAloD0MITz+oixRdckCUhpRSlGgVS+9oFkdAqbuOIsRQJ3V9lChoBmgJaA9DCPruVpYo8HBAlIaUUpRoFUvxaBZHQKm7xT8YQ8R1fZQoaAZoCWgPQwhmbOhmf6pxQJSGlFKUaBVL0WgWR0Cpu8uuq3mWdX2UKGgGaAloD0MI04bD0oD7cUCUhpRSlGgVS+5oFkdAqbwMxsVLz3V9lChoBmgJaA9DCOoFn+bkXHFAlIaUUpRoFUvWaBZHQKm8MNoakyl1fZQoaAZoCWgPQwi7tyIxQT9yQJSGlFKUaBVL5GgWR0CpvLHTiKixdX2UKGgGaAloD0MI/0KPGL0ecUCUhpRSlGgVS9poFkdAqbz7T2FnI3V9lChoBmgJaA9DCHYyOEpeuHFAlIaUUpRoFU0dAWgWR0Cpvg4mkWRBdX2UKGgGaAloD0MIRdYaSm0icUCUhpRSlGgVS95oFkdAqb6cGeMAFXV9lChoBmgJaA9DCFgfD313VlFAlIaUUpRoFUuraBZHQKm+sMm4RVZ1fZQoaAZoCWgPQwjYn8TnDhtxQJSGlFKUaBVNDwFoFkdAqb7J3JPqLXV9lChoBmgJaA9DCOOJIM5DaXFAlIaUUpRoFUv1aBZHQKm/6AIY3vR1fZQoaAZoCWgPQwh+NnLd1JtyQJSGlFKUaBVNFgFoFkdAqb/1UhmoSHV9lChoBmgJaA9DCJDY7h5gb3FAlIaUUpRoFUvcaBZHQKnANpYcNpd1fZQoaAZoCWgPQwjoobYNI4JxQJSGlFKUaBVNCAFoFkdAqcBwV/MGHHV9lChoBmgJaA9DCFCr6A8NcXFAlIaUUpRoFU0NAWgWR0CpwH40uUUxdX2UKGgGaAloD0MIq0IDsSz2cECUhpRSlGgVS/loFkdAqcCEwFkhBHV9lChoBmgJaA9DCNO/JJVpanNAlIaUUpRoFU0rAWgWR0CpwWS/sVtXdX2UKGgGaAloD0MI6ZleYiyPbkCUhpRSlGgVS/9oFkdAqcGPAEdNnHV9lChoBmgJaA9DCL6HS447dW9AlIaUUpRoFUv1aBZHQKnBsVUMoc91fZQoaAZoCWgPQwhj1LX2PsFyQJSGlFKUaBVNIwFoFkdAqcGvWnTAnHV9lChoBmgJaA9DCJyGqMLf/nBAlIaUUpRoFU2hA2gWR0Cpwwl2NedDdX2UKGgGaAloD0MISWQfZJlucECUhpRSlGgVTQMBaBZHQKnDD22XsxB1fZQoaAZoCWgPQwgy5q4lpDdyQJSGlFKUaBVL5GgWR0Cpww7sWweOdX2UKGgGaAloD0MIv2A3bJtScUCUhpRSlGgVTQsBaBZHQKnDzcoH9m91fZQoaAZoCWgPQwhi3A2idW1yQJSGlFKUaBVNHgFoFkdAqcQAISlFdHV9lChoBmgJaA9DCOzbSUS4vHJAlIaUUpRoFUvraBZHQKnEkIEbHZN1fZQoaAZoCWgPQwjqBDQRtu1wQJSGlFKUaBVL32gWR0CpxJr56+nJdX2UKGgGaAloD0MI8djPYqlacECUhpRSlGgVS/5oFkdAqcSnQ+lj3HV9lChoBmgJaA9DCFs//WfN6m9AlIaUUpRoFUv/aBZHQKnEtib2Dg91fZQoaAZoCWgPQwhWD5iHjJVwQJSGlFKUaBVL6WgWR0CpxM4pc5bRdX2UKGgGaAloD0MI0qdV9MeWcECUhpRSlGgVS/9oFkdAqcUcJWvKU3V9lChoBmgJaA9DCDLohNBBoXFAlIaUUpRoFUvgaBZHQKnTGxxkupV1fZQoaAZoCWgPQwhx/5HpEHFwQJSGlFKUaBVL+mgWR0Cp00rKNhmYdX2UKGgGaAloD0MI6UmZ1NAKbUCUhpRSlGgVS/NoFkdAqdNSHmA9V3V9lChoBmgJaA9DCNu/stKkS3BAlIaUUpRoFU0FAWgWR0Cp07xJul41dX2UKGgGaAloD0MIofKv5ZVocECUhpRSlGgVS+loFkdAqdSNmBe5WnV9lChoBmgJaA9DCHrCEg8oe11AlIaUUpRoFU3oA2gWR0Cp1JVPN3W4dX2UKGgGaAloD0MIpkI8Ei8xUUCUhpRSlGgVS6doFkdAqdUayyD7InV9lChoBmgJaA9DCHUdqinJgm9AlIaUUpRoFU0HAWgWR0Cp1RoJZ4fPdX2UKGgGaAloD0MIfuNrzyweVUCUhpRSlGgVS65oFkdAqdUiVdHDrXV9lChoBmgJaA9DCGdGPxoOSHBAlIaUUpRoFU0WAWgWR0Cp1VjoQnQZdX2UKGgGaAloD0MIxlBOtKsNcECUhpRSlGgVS9doFkdAqdWrVUdaMnV9lChoBmgJaA9DCH4YITzaxnJAlIaUUpRoFUv5aBZHQKnVwrGza9N1fZQoaAZoCWgPQwifq63Y33NyQJSGlFKUaBVL9GgWR0Cp1jdS2phndX2UKGgGaAloD0MIHVcju1J3ckCUhpRSlGgVTQMBaBZHQKnWbYDDCP91fZQoaAZoCWgPQwisPIGw0wNxQJSGlFKUaBVNQAFoFkdAqdbJs2vSt3V9lChoBmgJaA9DCCMxQQ3fJXJAlIaUUpRoFUvTaBZHQKnW9oPkJa91fZQoaAZoCWgPQwj7H2CtGrtwQJSGlFKUaBVL5GgWR0Cp1wrULDyfdX2UKGgGaAloD0MIRbx1/u1qcECUhpRSlGgVS/FoFkdAqddlolD4QHV9lChoBmgJaA9DCLOVl/yPVXFAlIaUUpRoFU0lAWgWR0Cp13h86V+rdX2UKGgGaAloD0MI0sQ7wBOZckCUhpRSlGgVS+NoFkdAqdeTvCuU2XV9lChoBmgJaA9DCP6ZQXxg/nBAlIaUUpRoFUvqaBZHQKnYZoX9BKN1fZQoaAZoCWgPQwiqQ26Gm3BxQJSGlFKUaBVNAQFoFkdAqdjbDMvAXXV9lChoBmgJaA9DCI6ULZK20nJAlIaUUpRoFUvxaBZHQKnZHp48lol1fZQoaAZoCWgPQwj3yycrBuRvQJSGlFKUaBVL9GgWR0Cp2WmTcIqtdX2UKGgGaAloD0MISicSTLWkcUCUhpRSlGgVTQUBaBZHQKnZdBLwnYx1fZQoaAZoCWgPQwhcBTHQtZxyQJSGlFKUaBVLyGgWR0Cp2ZRC6YmcdX2UKGgGaAloD0MI6j4AqQ1lcECUhpRSlGgVS/hoFkdAqdnWQjlgdHV9lChoBmgJaA9DCK5JtyXy129AlIaUUpRoFUv4aBZHQKnZ7bPhQ3x1fZQoaAZoCWgPQwia0Y+GE1BwQJSGlFKUaBVNJQFoFkdAqdoB1X/5tXV9lChoBmgJaA9DCPq19dN/D29AlIaUUpRoFUv1aBZHQKnahTm4iHJ1fZQoaAZoCWgPQwgw2A3bloFuQJSGlFKUaBVL8WgWR0Cp2st1hb4bdX2UKGgGaAloD0MIchk3NdDAcECUhpRSlGgVS+toFkdAqdreSntOVXV9lChoBmgJaA9DCCTx8nQu6nJAlIaUUpRoFUv7aBZHQKnbMcaOxSp1fZQoaAZoCWgPQwjxngPLET5vQJSGlFKUaBVL32gWR0Cp2zIKc/dJdX2UKGgGaAloD0MIQ+Vfy2vzcECUhpRSlGgVS/BoFkdAqdtfmDDjznV9lChoBmgJaA9DCBl1rb2P5nFAlIaUUpRoFU0pAWgWR0Cp3IzMaCL/dX2UKGgGaAloD0MIqDY4Ef2kbkCUhpRSlGgVS/1oFkdAqdywbsF+u3V9lChoBmgJaA9DCJhPVgwXgHNAlIaUUpRoFUvgaBZHQKndLMV1wHZ1fZQoaAZoCWgPQwiNJhdjYHRtQJSGlFKUaBVL6mgWR0Cp3WqVhTfjdX2UKGgGaAloD0MIC3va4a8qcECUhpRSlGgVS+ZoFkdAqd17Ccf/3nV9lChoBmgJaA9DCAG/RpJgbXJAlIaUUpRoFUvcaBZHQKndwOinHed1fZQoaAZoCWgPQwg4Ef3aeptxQJSGlFKUaBVNDwFoFkdAqd3C+L3sX3V9lChoBmgJaA9DCPfN/dXjj3JAlIaUUpRoFUv5aBZHQKneLbqyGBZ1fZQoaAZoCWgPQwjJ5T+kH4lwQJSGlFKUaBVNNwFoFkdAqd4zsSkCWHV9lChoBmgJaA9DCHK/Q1FgWXNAlIaUUpRoFUvfaBZHQKneXmV7hNx1fZQoaAZoCWgPQwjB4QUR6eFxQJSGlFKUaBVNIQFoFkdAqd7EzGgi/3V9lChoBmgJaA9DCKn4vyMq4HBAlIaUUpRoFUv8aBZHQKnfNW5H3Dh1fZQoaAZoCWgPQwgSvCGNimZxQJSGlFKUaBVNAwFoFkdAqd8/Vd5Y5nV9lChoBmgJaA9DCKmJPh8lW3FAlIaUUpRoFUvraBZHQKnfR1V5rxl1fZQoaAZoCWgPQwgEAwgfytBuQJSGlFKUaBVL/2gWR0Cp35EF4cFRdX2UKGgGaAloD0MIABx79lzgckCUhpRSlGgVTQkBaBZHQKnf46xxDLN1fZQoaAZoCWgPQwiVnBN7qNhxQJSGlFKUaBVL82gWR0Cp4LcMmWt2dX2UKGgGaAloD0MIe0rOiT07c0CUhpRSlGgVS/RoFkdAqeDfZsbednV9lChoBmgJaA9DCNAmh0/6vHBAlIaUUpRoFU0BAWgWR0Cp4Zq20AtGdX2UKGgGaAloD0MInmLVIAxWckCUhpRSlGgVS/NoFkdAqeGio2n89HV9lChoBmgJaA9DCBo1XyWfJXFAlIaUUpRoFUv/aBZHQKnhy4yXUpd1fZQoaAZoCWgPQwjb/L/qSFJxQJSGlFKUaBVL+WgWR0Cp4gbLMcIadX2UKGgGaAloD0MI+OEgIQrQckCUhpRSlGgVTQ8BaBZHQKnidhWHUMJ1fZQoaAZoCWgPQwgw1GGF2y5xQJSGlFKUaBVL+2gWR0Cp4sP60pmVdX2UKGgGaAloD0MIDLCPTt0hcECUhpRSlGgVTQgBaBZHQKni0NDtw711fZQoaAZoCWgPQwheaRmpN0VxQJSGlFKUaBVNFQFoFkdAqeMDQzDXOHV9lChoBmgJaA9DCDQQy2YO9m9AlIaUUpRoFU0KAWgWR0Cp42XF1jiGdX2UKGgGaAloD0MIuOhkqXXlb0CUhpRSlGgVS/BoFkdAqeN6ckMTe3V9lChoBmgJaA9DCJ4oCYl0lHBAlIaUUpRoFUv4aBZHQKnjiGHpKSR1fZQoaAZoCWgPQwgCRpc3x4VzQJSGlFKUaBVL6WgWR0Cp46nj6vaDdX2UKGgGaAloD0MIZr6Dnzh4cECUhpRSlGgVS/5oFkdAqeOmLxZuAXV9lChoBmgJaA9DCI3uIHaml3BAlIaUUpRoFU0DAWgWR0Cp5GAZ88cNdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 372,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
shiksriv_moon_lander_ppo_mlpolicy/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5804544f978fb6c4202b33aa2505c92abc4d4b9ba514e7b02a2982eebb2d662c
3
+ size 84893
shiksriv_moon_lander_ppo_mlpolicy/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd4ca478e52047459ba1c3b289e8da8364335b8b83106f0adb2435c8858dc3f3
3
+ size 43201
shiksriv_moon_lander_ppo_mlpolicy/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
shiksriv_moon_lander_ppo_mlpolicy/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0