Upload folder using huggingface_hub
Browse files- config.json +24 -0
- configuration_qwen2_vit.py +56 -0
- image_processing_qwen2_vl.py +453 -0
- model.safetensors +3 -0
- modeling_qwen2_vit.py +360 -0
- preprocessor_config.json +31 -0
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Qwen2ViTPreTrainedModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_qwen2_vit.Qwen2VLVisionConfig",
|
7 |
+
"AutoModel": "modeling_qwen2_vit.Qwen2ViTPreTrainedModel"
|
8 |
+
},
|
9 |
+
"depth": 32,
|
10 |
+
"embed_dim": 1280,
|
11 |
+
"hidden_act": "quick_gelu",
|
12 |
+
"hidden_size": 3584,
|
13 |
+
"in_channels": 3,
|
14 |
+
"in_chans": 3,
|
15 |
+
"mlp_ratio": 4,
|
16 |
+
"model_type": "qwen2_vit",
|
17 |
+
"num_heads": 16,
|
18 |
+
"patch_size": 14,
|
19 |
+
"spatial_merge_size": 2,
|
20 |
+
"spatial_patch_size": 14,
|
21 |
+
"temporal_patch_size": 2,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.45.2"
|
24 |
+
}
|
configuration_qwen2_vit.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
3 |
+
|
4 |
+
from transformers import PretrainedConfig
|
5 |
+
|
6 |
+
from transformers.utils import logging
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
class Qwen2VLVisionConfig(PretrainedConfig):
|
11 |
+
model_type = "qwen2_vit"
|
12 |
+
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
depth=32,
|
16 |
+
embed_dim=1280,
|
17 |
+
hidden_size=3584,
|
18 |
+
hidden_act="quick_gelu",
|
19 |
+
mlp_ratio=4,
|
20 |
+
num_heads=16,
|
21 |
+
in_channels=3,
|
22 |
+
patch_size=14,
|
23 |
+
spatial_merge_size=2,
|
24 |
+
temporal_patch_size=2,
|
25 |
+
**kwargs,
|
26 |
+
):
|
27 |
+
super().__init__(**kwargs)
|
28 |
+
|
29 |
+
self.depth = depth
|
30 |
+
self.embed_dim = embed_dim
|
31 |
+
self.hidden_size = hidden_size
|
32 |
+
self.hidden_act = hidden_act
|
33 |
+
self.mlp_ratio = mlp_ratio
|
34 |
+
self.num_heads = num_heads
|
35 |
+
self.in_channels = in_channels
|
36 |
+
self.patch_size = patch_size
|
37 |
+
self.spatial_merge_size = spatial_merge_size
|
38 |
+
self.temporal_patch_size = temporal_patch_size
|
39 |
+
|
40 |
+
@classmethod
|
41 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
42 |
+
cls._set_token_in_kwargs(kwargs)
|
43 |
+
|
44 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
45 |
+
|
46 |
+
if config_dict.get("model_type") == "qwen2_vl":
|
47 |
+
config_dict = config_dict["vision_config"]
|
48 |
+
|
49 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
50 |
+
logger.warning(
|
51 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
52 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
53 |
+
)
|
54 |
+
|
55 |
+
return cls.from_dict(config_dict, **kwargs)
|
56 |
+
|
image_processing_qwen2_vl.py
ADDED
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""Image processor class for Qwen2-VL."""
|
21 |
+
|
22 |
+
import math
|
23 |
+
from typing import Dict, List, Optional, Union
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
27 |
+
from transformers.image_transforms import convert_to_rgb, resize, to_channel_dimension_format
|
28 |
+
from transformers.image_utils import (
|
29 |
+
OPENAI_CLIP_MEAN,
|
30 |
+
OPENAI_CLIP_STD,
|
31 |
+
ChannelDimension,
|
32 |
+
ImageInput,
|
33 |
+
PILImageResampling,
|
34 |
+
VideoInput,
|
35 |
+
get_image_size,
|
36 |
+
infer_channel_dimension_format,
|
37 |
+
is_scaled_image,
|
38 |
+
is_valid_image,
|
39 |
+
make_list_of_images,
|
40 |
+
to_numpy_array,
|
41 |
+
valid_images,
|
42 |
+
validate_preprocess_arguments,
|
43 |
+
)
|
44 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
45 |
+
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
|
50 |
+
if is_vision_available():
|
51 |
+
from PIL import Image
|
52 |
+
|
53 |
+
|
54 |
+
def make_batched_images(images) -> List[List[ImageInput]]:
|
55 |
+
"""
|
56 |
+
Accepts images in list or nested list format, and makes a list of images for preprocessing.
|
57 |
+
|
58 |
+
Args:
|
59 |
+
images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`):
|
60 |
+
The input image.
|
61 |
+
|
62 |
+
Returns:
|
63 |
+
list: A list of images.
|
64 |
+
"""
|
65 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]):
|
66 |
+
return [img for img_list in images for img in img_list]
|
67 |
+
|
68 |
+
elif isinstance(images, (list, tuple)) and is_valid_image(images[0]):
|
69 |
+
return images
|
70 |
+
|
71 |
+
elif is_valid_image(images):
|
72 |
+
return [images]
|
73 |
+
|
74 |
+
raise ValueError(f"Could not make batched images from {images}")
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.llava_next_video.image_processing_llava_next_video.make_batched_videos
|
78 |
+
def make_batched_videos(videos) -> List[VideoInput]:
|
79 |
+
if isinstance(videos, (list, tuple)) and isinstance(videos[0], (list, tuple)) and is_valid_image(videos[0][0]):
|
80 |
+
return videos
|
81 |
+
|
82 |
+
elif isinstance(videos, (list, tuple)) and is_valid_image(videos[0]):
|
83 |
+
if isinstance(videos[0], Image.Image):
|
84 |
+
return [videos]
|
85 |
+
elif len(videos[0].shape) == 4:
|
86 |
+
return [list(video) for video in videos]
|
87 |
+
|
88 |
+
elif is_valid_image(videos) and len(videos.shape) == 4:
|
89 |
+
return [list(videos)]
|
90 |
+
|
91 |
+
raise ValueError(f"Could not make batched video from {videos}")
|
92 |
+
|
93 |
+
|
94 |
+
def smart_resize(
|
95 |
+
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
|
96 |
+
):
|
97 |
+
"""Rescales the image so that the following conditions are met:
|
98 |
+
|
99 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
100 |
+
|
101 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
102 |
+
|
103 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
104 |
+
|
105 |
+
"""
|
106 |
+
if height < factor or width < factor:
|
107 |
+
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
|
108 |
+
elif max(height, width) / min(height, width) > 200:
|
109 |
+
raise ValueError(
|
110 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
111 |
+
)
|
112 |
+
h_bar = round(height / factor) * factor
|
113 |
+
w_bar = round(width / factor) * factor
|
114 |
+
if h_bar * w_bar > max_pixels:
|
115 |
+
beta = math.sqrt((height * width) / max_pixels)
|
116 |
+
h_bar = math.floor(height / beta / factor) * factor
|
117 |
+
w_bar = math.floor(width / beta / factor) * factor
|
118 |
+
elif h_bar * w_bar < min_pixels:
|
119 |
+
beta = math.sqrt(min_pixels / (height * width))
|
120 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
121 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
122 |
+
return h_bar, w_bar
|
123 |
+
|
124 |
+
|
125 |
+
class Qwen2ImageProcessor(BaseImageProcessor):
|
126 |
+
r"""
|
127 |
+
Constructs a Qwen2-VL image processor that dynamically resizes images based on the original images.
|
128 |
+
|
129 |
+
Args:
|
130 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
131 |
+
Whether to resize the image's (height, width) dimensions.
|
132 |
+
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
133 |
+
Resampling filter to use when resizing the image.
|
134 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
135 |
+
Whether to rescale the image by the specified scale `rescale_factor`.
|
136 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
137 |
+
Scale factor to use if rescaling the image.
|
138 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
139 |
+
Whether to normalize the image.
|
140 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
141 |
+
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
142 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
143 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
144 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
145 |
+
Whether to convert the image to RGB.
|
146 |
+
min_pixels (`int`, *optional*, defaults to `56 * 56`):
|
147 |
+
The min pixels of the image to resize the image.
|
148 |
+
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
|
149 |
+
The max pixels of the image to resize the image.
|
150 |
+
patch_size (`int`, *optional*, defaults to 14):
|
151 |
+
The spacial patch size of the vision encoder.
|
152 |
+
temporal_patch_size (`int`, *optional*, defaults to 2):
|
153 |
+
The temporal patch size of the vision encoder.
|
154 |
+
merge_size (`int`, *optional*, defaults to 2):
|
155 |
+
The merge size of the vision encoder to llm encoder.
|
156 |
+
"""
|
157 |
+
|
158 |
+
model_input_names = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw"]
|
159 |
+
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
do_resize: bool = True,
|
163 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
164 |
+
do_rescale: bool = True,
|
165 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
166 |
+
do_normalize: bool = True,
|
167 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
168 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
169 |
+
do_convert_rgb: bool = True,
|
170 |
+
min_pixels: int = 56 * 56,
|
171 |
+
max_pixels: int = 28 * 28 * 1280,
|
172 |
+
patch_size: int = 14,
|
173 |
+
temporal_patch_size: int = 2,
|
174 |
+
merge_size: int = 2,
|
175 |
+
**kwargs,
|
176 |
+
) -> None:
|
177 |
+
super().__init__(**kwargs)
|
178 |
+
self.do_resize = do_resize
|
179 |
+
self.resample = resample
|
180 |
+
self.do_rescale = do_rescale
|
181 |
+
self.rescale_factor = rescale_factor
|
182 |
+
self.do_normalize = do_normalize
|
183 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
184 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
185 |
+
self.min_pixels = min_pixels
|
186 |
+
self.max_pixels = max_pixels
|
187 |
+
self.patch_size = patch_size
|
188 |
+
self.temporal_patch_size = temporal_patch_size
|
189 |
+
self.merge_size = merge_size
|
190 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
191 |
+
self.do_convert_rgb = do_convert_rgb
|
192 |
+
|
193 |
+
def _preprocess(
|
194 |
+
self,
|
195 |
+
images: Union[ImageInput, VideoInput],
|
196 |
+
do_resize: bool = None,
|
197 |
+
resample: PILImageResampling = None,
|
198 |
+
do_rescale: bool = None,
|
199 |
+
rescale_factor: float = None,
|
200 |
+
do_normalize: bool = None,
|
201 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
202 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
203 |
+
do_convert_rgb: bool = None,
|
204 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
205 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
206 |
+
):
|
207 |
+
"""
|
208 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
images (`ImageInput`):
|
212 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
213 |
+
vision_info (`List[Dict]`, *optional*):
|
214 |
+
Optional list of dictionaries containing additional information about vision inputs.
|
215 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
216 |
+
Whether to resize the image.
|
217 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
218 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
219 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
220 |
+
Whether to rescale the image.
|
221 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
222 |
+
Scale factor to use if rescaling the image.
|
223 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
224 |
+
Whether to normalize the image.
|
225 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
226 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
227 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
228 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
229 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
230 |
+
Whether to convert the image to RGB.
|
231 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
232 |
+
The channel dimension format for the output image. Can be one of:
|
233 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
234 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
235 |
+
- Unset: Use the channel dimension format of the input image.
|
236 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
237 |
+
The channel dimension format for the input image. Can be one of:
|
238 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
239 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
240 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
241 |
+
"""
|
242 |
+
images = make_list_of_images(images)
|
243 |
+
|
244 |
+
if do_convert_rgb:
|
245 |
+
images = [convert_to_rgb(image) for image in images]
|
246 |
+
|
247 |
+
# All transformations expect numpy arrays.
|
248 |
+
images = [to_numpy_array(image) for image in images]
|
249 |
+
|
250 |
+
if is_scaled_image(images[0]) and do_rescale:
|
251 |
+
logger.warning_once(
|
252 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
253 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
254 |
+
)
|
255 |
+
if input_data_format is None:
|
256 |
+
# We assume that all images have the same channel dimension format.
|
257 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
258 |
+
|
259 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
260 |
+
resized_height, resized_width = height, width
|
261 |
+
processed_images = []
|
262 |
+
for image in images:
|
263 |
+
if do_resize:
|
264 |
+
resized_height, resized_width = smart_resize(
|
265 |
+
height,
|
266 |
+
width,
|
267 |
+
factor=self.patch_size * self.merge_size,
|
268 |
+
min_pixels=self.min_pixels,
|
269 |
+
max_pixels=self.max_pixels,
|
270 |
+
)
|
271 |
+
image = resize(
|
272 |
+
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
|
273 |
+
)
|
274 |
+
|
275 |
+
if do_rescale:
|
276 |
+
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
277 |
+
|
278 |
+
if do_normalize:
|
279 |
+
image = self.normalize(
|
280 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
281 |
+
)
|
282 |
+
|
283 |
+
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
284 |
+
processed_images.append(image)
|
285 |
+
|
286 |
+
patches = np.array(processed_images)
|
287 |
+
if data_format == ChannelDimension.LAST:
|
288 |
+
patches = patches.transpose(0, 3, 1, 2)
|
289 |
+
if patches.shape[0] == 1:
|
290 |
+
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
|
291 |
+
channel = patches.shape[1]
|
292 |
+
grid_t = patches.shape[0] // self.temporal_patch_size
|
293 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
294 |
+
patches = patches.reshape(
|
295 |
+
grid_t,
|
296 |
+
self.temporal_patch_size,
|
297 |
+
channel,
|
298 |
+
grid_h // self.merge_size,
|
299 |
+
self.merge_size,
|
300 |
+
self.patch_size,
|
301 |
+
grid_w // self.merge_size,
|
302 |
+
self.merge_size,
|
303 |
+
self.patch_size,
|
304 |
+
)
|
305 |
+
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
|
306 |
+
flatten_patches = patches.reshape(
|
307 |
+
grid_t * grid_h * grid_w, channel * self.temporal_patch_size * self.patch_size * self.patch_size
|
308 |
+
)
|
309 |
+
|
310 |
+
return flatten_patches, (grid_t, grid_h, grid_w)
|
311 |
+
|
312 |
+
def preprocess(
|
313 |
+
self,
|
314 |
+
images: ImageInput,
|
315 |
+
videos: VideoInput = None,
|
316 |
+
do_resize: bool = None,
|
317 |
+
size: Dict[str, int] = None,
|
318 |
+
resample: PILImageResampling = None,
|
319 |
+
do_rescale: bool = None,
|
320 |
+
rescale_factor: float = None,
|
321 |
+
do_normalize: bool = None,
|
322 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
323 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
324 |
+
do_convert_rgb: bool = None,
|
325 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
326 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
327 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
328 |
+
):
|
329 |
+
"""
|
330 |
+
Args:
|
331 |
+
images (`ImageInput`):
|
332 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
333 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
334 |
+
videos (`VideoInput`):
|
335 |
+
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
|
336 |
+
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
|
337 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
338 |
+
Whether to resize the image.
|
339 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
340 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
341 |
+
the longest edge resized to keep the input aspect ratio.
|
342 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
343 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
344 |
+
has an effect if `do_resize` is set to `True`.
|
345 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
346 |
+
Whether to rescale the image.
|
347 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
348 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
349 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
350 |
+
Whether to normalize the image.
|
351 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
352 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
353 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
354 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
355 |
+
`True`.
|
356 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
357 |
+
Whether to convert the image to RGB.
|
358 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
359 |
+
The type of tensors to return. Can be one of:
|
360 |
+
- Unset: Return a list of `np.ndarray`.
|
361 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
362 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
363 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
364 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
365 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
366 |
+
The channel dimension format for the output image. Can be one of:
|
367 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
368 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
369 |
+
- Unset: Use the channel dimension format of the input image.
|
370 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
371 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
372 |
+
from the input image. Can be one of:
|
373 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
374 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
375 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
376 |
+
|
377 |
+
"""
|
378 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
379 |
+
size = size if size is not None else self.size
|
380 |
+
resample = resample if resample is not None else self.resample
|
381 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
382 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
383 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
384 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
385 |
+
image_std = image_std if image_std is not None else self.image_std
|
386 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
387 |
+
|
388 |
+
if images is not None:
|
389 |
+
images = make_batched_images(images)
|
390 |
+
if videos is not None:
|
391 |
+
videos = make_batched_videos(videos)
|
392 |
+
|
393 |
+
if images is not None and not valid_images(images):
|
394 |
+
raise ValueError(
|
395 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
396 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
397 |
+
)
|
398 |
+
|
399 |
+
validate_preprocess_arguments(
|
400 |
+
rescale_factor=rescale_factor,
|
401 |
+
do_normalize=do_normalize,
|
402 |
+
image_mean=image_mean,
|
403 |
+
image_std=image_std,
|
404 |
+
do_resize=do_resize,
|
405 |
+
size=size,
|
406 |
+
resample=resample,
|
407 |
+
)
|
408 |
+
|
409 |
+
if images is not None:
|
410 |
+
pixel_values, vision_grid_thws = [], []
|
411 |
+
for image in images:
|
412 |
+
patches, image_grid_thw = self._preprocess(
|
413 |
+
image,
|
414 |
+
do_resize=do_resize,
|
415 |
+
resample=resample,
|
416 |
+
do_rescale=do_rescale,
|
417 |
+
rescale_factor=rescale_factor,
|
418 |
+
do_normalize=do_normalize,
|
419 |
+
image_mean=image_mean,
|
420 |
+
image_std=image_std,
|
421 |
+
data_format=data_format,
|
422 |
+
do_convert_rgb=do_convert_rgb,
|
423 |
+
input_data_format=input_data_format,
|
424 |
+
)
|
425 |
+
pixel_values.extend(patches)
|
426 |
+
vision_grid_thws.append(image_grid_thw)
|
427 |
+
pixel_values = np.array(pixel_values)
|
428 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
429 |
+
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
|
430 |
+
|
431 |
+
if videos is not None:
|
432 |
+
pixel_values, vision_grid_thws = [], []
|
433 |
+
for images in videos:
|
434 |
+
patches, video_grid_thw = self._preprocess(
|
435 |
+
images,
|
436 |
+
do_resize=do_resize,
|
437 |
+
resample=resample,
|
438 |
+
do_rescale=do_rescale,
|
439 |
+
rescale_factor=rescale_factor,
|
440 |
+
do_normalize=do_normalize,
|
441 |
+
image_mean=image_mean,
|
442 |
+
image_std=image_std,
|
443 |
+
data_format=data_format,
|
444 |
+
do_convert_rgb=do_convert_rgb,
|
445 |
+
input_data_format=input_data_format,
|
446 |
+
)
|
447 |
+
pixel_values.extend(patches)
|
448 |
+
vision_grid_thws.append(video_grid_thw)
|
449 |
+
pixel_values = np.array(pixel_values)
|
450 |
+
vision_grid_thws = np.array(vision_grid_thws)
|
451 |
+
data = {"pixel_values_videos": pixel_values, "video_grid_thw": vision_grid_thws}
|
452 |
+
|
453 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:571d794b5614851cd52b423dadab31dbeeb3aca41eb706524ba65c30c8208605
|
3 |
+
size 1351555936
|
modeling_qwen2_vit.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
"""PyTorch Qwen2-VL model."""
|
21 |
+
|
22 |
+
import math
|
23 |
+
from dataclasses import dataclass
|
24 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
25 |
+
|
26 |
+
import torch
|
27 |
+
import torch.nn as nn
|
28 |
+
import torch.nn.functional as F
|
29 |
+
import torch.utils.checkpoint
|
30 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.cache_utils import Cache, StaticCache
|
34 |
+
from transformers.generation import GenerationMixin
|
35 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
36 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
37 |
+
from transformers.modeling_utils import PreTrainedModel
|
38 |
+
from transformers.utils import (
|
39 |
+
add_start_docstrings,
|
40 |
+
add_start_docstrings_to_model_forward,
|
41 |
+
is_flash_attn_2_available,
|
42 |
+
is_flash_attn_greater_or_equal_2_10,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
|
47 |
+
if is_flash_attn_2_available():
|
48 |
+
from flash_attn import flash_attn_varlen_func
|
49 |
+
|
50 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
51 |
+
else:
|
52 |
+
flash_attn_varlen_func = None
|
53 |
+
|
54 |
+
from .configuration_qwen2_vit import Qwen2VLVisionConfig
|
55 |
+
|
56 |
+
# Copied from transformers.models.llama.modeling_llama.rotate_half
|
57 |
+
def rotate_half(x):
|
58 |
+
"""Rotates half the hidden dims of the input."""
|
59 |
+
x1 = x[..., : x.shape[-1] // 2]
|
60 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
61 |
+
return torch.cat((-x2, x1), dim=-1)
|
62 |
+
|
63 |
+
def apply_multimodal_rotary_pos_emb(q, k, cos, sin, mrope_section, unsqueeze_dim=1):
|
64 |
+
"""Applies Rotary Position Embedding with Multimodal Sections to the query and key tensors (https://qwenlm.github.io/blog/qwen2-vl/).
|
65 |
+
|
66 |
+
Explanation:
|
67 |
+
Multimodal 3D rotary position embedding is an extension to 1D rotary position embedding. The input embedding
|
68 |
+
sequence contains vision (images / videos) embedding and text embedding or just contains text embedding. For
|
69 |
+
vision embedding part, we apply rotary position embedding on temporal, height and width dimension seperately.
|
70 |
+
Here we split the channel dimension to 3 chunks for the temporal, height and width rotary position embedding.
|
71 |
+
For text embedding part, we just apply 1D rotary position embedding. The three rotary position index (temporal,
|
72 |
+
height and width) of text embedding is always the same, so the text embedding rotary position embedding has no
|
73 |
+
difference with modern LLMs.
|
74 |
+
|
75 |
+
Args:
|
76 |
+
q (`torch.Tensor`): The query tensor.
|
77 |
+
k (`torch.Tensor`): The key tensor.
|
78 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
79 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
80 |
+
position_ids (`torch.Tensor`):
|
81 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
82 |
+
used to pass offsetted position ids when working with a KV-cache.
|
83 |
+
mrope_section(`List(int)`):
|
84 |
+
Multimodal rope section is for channel dimension of temporal, height and width in rope calculation.
|
85 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
86 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
87 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
88 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
89 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
90 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
91 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
92 |
+
Returns:
|
93 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
94 |
+
"""
|
95 |
+
mrope_section = mrope_section * 2
|
96 |
+
cos = torch.cat([m[i % 3] for i, m in enumerate(cos.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
97 |
+
unsqueeze_dim
|
98 |
+
)
|
99 |
+
sin = torch.cat([m[i % 3] for i, m in enumerate(sin.split(mrope_section, dim=-1))], dim=-1).unsqueeze(
|
100 |
+
unsqueeze_dim
|
101 |
+
)
|
102 |
+
|
103 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
104 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
105 |
+
return q_embed, k_embed
|
106 |
+
|
107 |
+
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
108 |
+
orig_dtype = tensor.dtype
|
109 |
+
tensor = tensor.float()
|
110 |
+
cos = freqs.cos()
|
111 |
+
sin = freqs.sin()
|
112 |
+
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
113 |
+
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
114 |
+
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
115 |
+
output = output.to(orig_dtype)
|
116 |
+
return output
|
117 |
+
|
118 |
+
class VisionRotaryEmbedding(nn.Module):
|
119 |
+
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
120 |
+
super().__init__()
|
121 |
+
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
122 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
123 |
+
|
124 |
+
def forward(self, seqlen: int) -> torch.Tensor:
|
125 |
+
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
126 |
+
freqs = torch.outer(seq, self.inv_freq)
|
127 |
+
return freqs
|
128 |
+
|
129 |
+
class PatchEmbed(nn.Module):
|
130 |
+
def __init__(
|
131 |
+
self,
|
132 |
+
patch_size: int = 14,
|
133 |
+
temporal_patch_size: int = 2,
|
134 |
+
in_channels: int = 3,
|
135 |
+
embed_dim: int = 1152,
|
136 |
+
) -> None:
|
137 |
+
super().__init__()
|
138 |
+
self.patch_size = patch_size
|
139 |
+
self.temporal_patch_size = temporal_patch_size
|
140 |
+
self.in_channels = in_channels
|
141 |
+
self.embed_dim = embed_dim
|
142 |
+
|
143 |
+
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
144 |
+
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
|
145 |
+
|
146 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
147 |
+
target_dtype = self.proj.weight.dtype
|
148 |
+
hidden_states = hidden_states.view(
|
149 |
+
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
150 |
+
)
|
151 |
+
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
152 |
+
return hidden_states
|
153 |
+
|
154 |
+
class PatchMerger(nn.Module):
|
155 |
+
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
156 |
+
super().__init__()
|
157 |
+
self.hidden_size = context_dim * (spatial_merge_size**2)
|
158 |
+
self.ln_q = LayerNorm(context_dim, eps=1e-6)
|
159 |
+
self.mlp = nn.Sequential(
|
160 |
+
nn.Linear(self.hidden_size, self.hidden_size),
|
161 |
+
nn.GELU(),
|
162 |
+
nn.Linear(self.hidden_size, dim),
|
163 |
+
)
|
164 |
+
|
165 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
166 |
+
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
167 |
+
return x
|
168 |
+
|
169 |
+
class VisionMlp(nn.Module):
|
170 |
+
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
|
171 |
+
super().__init__()
|
172 |
+
self.fc1 = nn.Linear(dim, hidden_dim)
|
173 |
+
self.act = ACT2FN[hidden_act]
|
174 |
+
self.fc2 = nn.Linear(hidden_dim, dim)
|
175 |
+
|
176 |
+
def forward(self, x) -> torch.Tensor:
|
177 |
+
return self.fc2(self.act(self.fc1(x)))
|
178 |
+
|
179 |
+
class VisionAttention(nn.Module):
|
180 |
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
181 |
+
super().__init__()
|
182 |
+
self.num_heads = num_heads
|
183 |
+
self.head_dim = dim // num_heads
|
184 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
185 |
+
self.proj = nn.Linear(dim, dim)
|
186 |
+
|
187 |
+
def forward(
|
188 |
+
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
189 |
+
) -> torch.Tensor:
|
190 |
+
seq_length = hidden_states.shape[0]
|
191 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
192 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
193 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
194 |
+
|
195 |
+
attention_mask = torch.full(
|
196 |
+
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
197 |
+
)
|
198 |
+
for i in range(1, len(cu_seqlens)):
|
199 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = 0
|
200 |
+
|
201 |
+
q = q.transpose(0, 1)
|
202 |
+
k = k.transpose(0, 1)
|
203 |
+
v = v.transpose(0, 1)
|
204 |
+
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
205 |
+
attn_weights = attn_weights + attention_mask
|
206 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
|
207 |
+
attn_output = torch.matmul(attn_weights, v)
|
208 |
+
attn_output = attn_output.transpose(0, 1)
|
209 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
210 |
+
attn_output = self.proj(attn_output)
|
211 |
+
return attn_output
|
212 |
+
|
213 |
+
class VisionFlashAttention2(nn.Module):
|
214 |
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
215 |
+
super().__init__()
|
216 |
+
self.num_heads = num_heads
|
217 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
218 |
+
self.proj = nn.Linear(dim, dim)
|
219 |
+
|
220 |
+
def forward(
|
221 |
+
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
222 |
+
) -> torch.Tensor:
|
223 |
+
seq_length = hidden_states.shape[0]
|
224 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
225 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
226 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
227 |
+
|
228 |
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
229 |
+
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
230 |
+
seq_length, -1
|
231 |
+
)
|
232 |
+
attn_output = self.proj(attn_output)
|
233 |
+
return attn_output
|
234 |
+
|
235 |
+
class VisionSdpaAttention(nn.Module):
|
236 |
+
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
237 |
+
super().__init__()
|
238 |
+
self.num_heads = num_heads
|
239 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
240 |
+
self.proj = nn.Linear(dim, dim)
|
241 |
+
|
242 |
+
def forward(
|
243 |
+
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
244 |
+
) -> torch.Tensor:
|
245 |
+
seq_length = hidden_states.shape[0]
|
246 |
+
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
247 |
+
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
248 |
+
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
249 |
+
|
250 |
+
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
251 |
+
for i in range(1, len(cu_seqlens)):
|
252 |
+
attention_mask[..., cu_seqlens[i - 1] : cu_seqlens[i], cu_seqlens[i - 1] : cu_seqlens[i]] = True
|
253 |
+
q = q.transpose(0, 1)
|
254 |
+
k = k.transpose(0, 1)
|
255 |
+
v = v.transpose(0, 1)
|
256 |
+
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
|
257 |
+
attn_output = attn_output.transpose(0, 1)
|
258 |
+
attn_output = attn_output.reshape(seq_length, -1)
|
259 |
+
attn_output = self.proj(attn_output)
|
260 |
+
return attn_output
|
261 |
+
|
262 |
+
QWEN2_VL_VISION_ATTENTION_CLASSES = {
|
263 |
+
"eager": VisionAttention,
|
264 |
+
"flash_attention_2": VisionFlashAttention2,
|
265 |
+
"sdpa": VisionSdpaAttention,
|
266 |
+
}
|
267 |
+
|
268 |
+
class Qwen2VLVisionBlock(nn.Module):
|
269 |
+
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
270 |
+
super().__init__()
|
271 |
+
self.norm1 = LayerNorm(config.embed_dim, eps=1e-6)
|
272 |
+
self.norm2 = LayerNorm(config.embed_dim, eps=1e-6)
|
273 |
+
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
274 |
+
|
275 |
+
self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation](
|
276 |
+
config.embed_dim, num_heads=config.num_heads
|
277 |
+
)
|
278 |
+
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)
|
279 |
+
|
280 |
+
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb) -> torch.Tensor:
|
281 |
+
hidden_states = hidden_states + self.attn(
|
282 |
+
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
283 |
+
)
|
284 |
+
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
285 |
+
return hidden_states
|
286 |
+
|
287 |
+
class Qwen2ViTPreTrainedModel(PreTrainedModel):
|
288 |
+
config_class = Qwen2VLVisionConfig
|
289 |
+
_no_split_modules = ["Qwen2VLVisionBlock"]
|
290 |
+
|
291 |
+
def __init__(self, config) -> None:
|
292 |
+
super().__init__(config)
|
293 |
+
self.spatial_merge_size = config.spatial_merge_size
|
294 |
+
|
295 |
+
self.patch_embed = PatchEmbed(
|
296 |
+
patch_size=config.patch_size,
|
297 |
+
temporal_patch_size=config.temporal_patch_size,
|
298 |
+
in_channels=config.in_channels,
|
299 |
+
embed_dim=config.embed_dim,
|
300 |
+
)
|
301 |
+
|
302 |
+
head_dim = config.embed_dim // config.num_heads
|
303 |
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
304 |
+
|
305 |
+
self.blocks = nn.ModuleList(
|
306 |
+
[Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
|
307 |
+
)
|
308 |
+
self.merger = PatchMerger(
|
309 |
+
dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
|
310 |
+
)
|
311 |
+
|
312 |
+
def get_dtype(self) -> torch.dtype:
|
313 |
+
return self.blocks[0].mlp.fc2.weight.dtype
|
314 |
+
|
315 |
+
def get_device(self) -> torch.device:
|
316 |
+
return self.blocks[0].mlp.fc2.weight.device
|
317 |
+
|
318 |
+
def rot_pos_emb(self, grid_thw):
|
319 |
+
pos_ids = []
|
320 |
+
for t, h, w in grid_thw:
|
321 |
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
322 |
+
hpos_ids = hpos_ids.reshape(
|
323 |
+
h // self.spatial_merge_size,
|
324 |
+
self.spatial_merge_size,
|
325 |
+
w // self.spatial_merge_size,
|
326 |
+
self.spatial_merge_size,
|
327 |
+
)
|
328 |
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
329 |
+
hpos_ids = hpos_ids.flatten()
|
330 |
+
|
331 |
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
332 |
+
wpos_ids = wpos_ids.reshape(
|
333 |
+
h // self.spatial_merge_size,
|
334 |
+
self.spatial_merge_size,
|
335 |
+
w // self.spatial_merge_size,
|
336 |
+
self.spatial_merge_size,
|
337 |
+
)
|
338 |
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
339 |
+
wpos_ids = wpos_ids.flatten()
|
340 |
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
341 |
+
pos_ids = torch.cat(pos_ids, dim=0)
|
342 |
+
max_grid_size = grid_thw[:, 1:].max()
|
343 |
+
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
344 |
+
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
345 |
+
return rotary_pos_emb
|
346 |
+
|
347 |
+
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
|
348 |
+
hidden_states = self.patch_embed(hidden_states)
|
349 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
350 |
+
|
351 |
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
352 |
+
dim=0, dtype=torch.int32
|
353 |
+
)
|
354 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
355 |
+
|
356 |
+
for blk in self.blocks:
|
357 |
+
hidden_states = blk(hidden_states, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
358 |
+
|
359 |
+
return self.merger(hidden_states)
|
360 |
+
|
preprocessor_config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "image_processing_qwen2_vl.Qwen2ImageProcessor"
|
4 |
+
},
|
5 |
+
"do_convert_rgb": true,
|
6 |
+
"do_normalize": true,
|
7 |
+
"do_rescale": true,
|
8 |
+
"do_resize": true,
|
9 |
+
"image_mean": [
|
10 |
+
0.48145466,
|
11 |
+
0.4578275,
|
12 |
+
0.40821073
|
13 |
+
],
|
14 |
+
"image_processor_type": "Qwen2ImageProcessor",
|
15 |
+
"image_std": [
|
16 |
+
0.26862954,
|
17 |
+
0.26130258,
|
18 |
+
0.27577711
|
19 |
+
],
|
20 |
+
"max_pixels": 12845056,
|
21 |
+
"merge_size": 2,
|
22 |
+
"min_pixels": 3136,
|
23 |
+
"patch_size": 14,
|
24 |
+
"resample": 3,
|
25 |
+
"rescale_factor": 0.00392156862745098,
|
26 |
+
"size": {
|
27 |
+
"max_pixels": 12845056,
|
28 |
+
"min_pixels": 3136
|
29 |
+
},
|
30 |
+
"temporal_patch_size": 2
|
31 |
+
}
|