--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.4115296803652968 - name: Recall type: recall value: 0.5396706586826348 - name: F1 type: f1 value: 0.46696891191709844 - name: Accuracy type: accuracy value: 0.4350594227504245 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 2.5624 - Precision: 0.4115 - Recall: 0.5397 - F1: 0.4670 - Accuracy: 0.4351 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.06 | 10 | 3.8065 | 0.1637 | 0.2582 | 0.2003 | 0.2585 | | No log | 0.12 | 20 | 3.4787 | 0.4661 | 0.3862 | 0.4224 | 0.3353 | | No log | 0.19 | 30 | 3.2587 | 0.4332 | 0.4731 | 0.4522 | 0.3667 | | No log | 0.25 | 40 | 3.0615 | 0.4144 | 0.4873 | 0.4479 | 0.3846 | | No log | 0.31 | 50 | 2.9052 | 0.3993 | 0.5090 | 0.4475 | 0.4024 | | No log | 0.38 | 60 | 2.7819 | 0.3876 | 0.5165 | 0.4429 | 0.4143 | | No log | 0.44 | 70 | 2.6853 | 0.3891 | 0.5202 | 0.4452 | 0.4164 | | No log | 0.5 | 80 | 2.6245 | 0.3942 | 0.5269 | 0.4510 | 0.4236 | | No log | 0.56 | 90 | 2.5777 | 0.4056 | 0.5352 | 0.4614 | 0.4312 | | No log | 0.62 | 100 | 2.5624 | 0.4115 | 0.5397 | 0.4670 | 0.4351 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cpu - Datasets 2.12.0 - Tokenizers 0.13.3