|
from datasets import load_dataset |
|
from transformers import GPT2LMHeadModel, GPT2Tokenizer |
|
from transformers import Trainer, TrainingArguments |
|
|
|
ds = load_dataset("openai/summarize_from_feedback", "axis") |
|
|
|
|
|
dataset = load_dataset("path_to_your_dataset") |
|
from datasets import load_dataset |
|
|
|
|
|
|
|
|
|
model_name = "gpt2" |
|
model = GPT2LMHeadModel.from_pretrained(model_name) |
|
tokenizer = GPT2Tokenizer.from_pretrained(model_name) |
|
|
|
|
|
def preprocess_function(examples): |
|
return tokenizer(examples['answer'], truncation=True, padding='max_length', max_length=512) |
|
|
|
|
|
encoded_dataset = dataset.map(preprocess_function, batched=True) |
|
|
|
|
|
training_args = TrainingArguments( |
|
output_dir="./results", |
|
evaluation_strategy="epoch", |
|
per_device_train_batch_size=4, |
|
per_device_eval_batch_size=4, |
|
num_train_epochs=3, |
|
logging_dir='./logs', |
|
logging_steps=10, |
|
save_steps=500, |
|
warmup_steps=200, |
|
weight_decay=0.01, |
|
load_best_model_at_end=True, |
|
) |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=encoded_dataset['train'], |
|
eval_dataset=encoded_dataset['test'], |
|
) |
|
|
|
|
|
trainer.train() |
|
|
|
|
|
model.save_pretrained("./fine_tuned_model") |
|
tokenizer.save_pretrained("./fine_tuned_model") |
|
|
|
print("Model fine-tuning complete!") |
|
|