shivigupta
commited on
Commit
•
4f75878
1
Parent(s):
27fcd8a
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 267.35 +/- 17.62
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f963835f5f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f963835f680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f963835f710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f963835f7a0>", "_build": "<function ActorCriticPolicy._build at 0x7f963835f830>", "forward": "<function ActorCriticPolicy.forward at 0x7f963835f8c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f963835f950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f963835f9e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f963835fa70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f963835fb00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f963835fb90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f96383ba060>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652783206.8915734, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpgk7zwVaw+Fw+vvL17gb441Ky8OogovQAAAAAAAAAAZiADvCmsW7wNWIW9OdEwvHWixL0VKBC9AACAPwAAgD/NBgU8rkOCuv7rKLoaxAs1OvblOlIHRTkAAIA/AACAP3MOlj0fhfm5kDR4M0SudCukDNa7hf3RswAAgD8AAIA/LWNWvuF0GT/+hXY9ZOPDvpXmBL6wj9s9AAAAAAAAAAAAz3m94ZSnuht5jzlwiYw0UMCcOl6epLgAAIA/AACAPwC0Zb0LnEo/PFCgO4RTw767obS8GnavOgAAAAAAAAAAmpcPvJDF6D7rsGG+GwTQvit8GL5PJ5m9AAAAAAAAAAAtQms+cIatP4vb6j47TbC+YGSMPopslTwAAAAAAAAAAABx07zDwXC6A+OFO61jfDhLxVQ7Vt5zuQAAgD8AAIA/pjx5PuzggT+4Ebs9xf3Cvuhrej7NwQq+AAAAAAAAAACgRxu+GRafPgWfzjxFPJq+X5A9vHIeJ70AAAAAAAAAAOap1z2qKgM+A1mfvba0g760I4k8aogpPQAAAAAAAAAAzbedPeyJ8LlQnbu7Qg4COCIjkrpCgCW3AAAAAAAAAADAKn++qLU/P0B+5L1FFNm+Fr5lvtraobwAAAAAAAAAAA0alT0UUJO6cIJUOfOTRTTAwwW6CNh1uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEayql9+WckCUhpRSlIwBbJRNGAGMAXSUR0CWbMOY6XBydX2UKGgGaAloD0MI5J8ZxAcBcUCUhpRSlGgVTSQCaBZHQJZtSxmkFfR1fZQoaAZoCWgPQwizYU1lUVxxQJSGlFKUaBVNGwJoFkdAlm4pyU9py3V9lChoBmgJaA9DCLb2PlUFa21AlIaUUpRoFU3uAmgWR0CWbtlAeJYUdX2UKGgGaAloD0MIi6n0E05zb0CUhpRSlGgVTdwBaBZHQJZwQIv8IiV1fZQoaAZoCWgPQwhfKGA7WB5wQJSGlFKUaBVNYAFoFkdAlnGgyylennV9lChoBmgJaA9DCIiFWtM82W9AlIaUUpRoFUv7aBZHQJZ0PY4ACGN1fZQoaAZoCWgPQwjMeca+ZI85QJSGlFKUaBVLvmgWR0CWdrfoA4n4dX2UKGgGaAloD0MIMzffiO7IUECUhpRSlGgVS8JoFkdAlnd2h7E5yXV9lChoBmgJaA9DCEkvavdrEnFAlIaUUpRoFU17AWgWR0CWeKuuA7PqdX2UKGgGaAloD0MIaHdIMUBlcECUhpRSlGgVTY0BaBZHQJZ4uXKKYRd1fZQoaAZoCWgPQwiE1VjC2rRIQJSGlFKUaBVLt2gWR0CWebkfcN6PdX2UKGgGaAloD0MI3lhQGNQhcUCUhpRSlGgVTcgBaBZHQJZ7Pcwg1WN1fZQoaAZoCWgPQwiim/2B8i1yQJSGlFKUaBVNmQJoFkdAlntLah6By3V9lChoBmgJaA9DCOUqFr8paWJAlIaUUpRoFU3oA2gWR0CWfif2bobGdX2UKGgGaAloD0MInwWhvM/ScECUhpRSlGgVTSYBaBZHQJaAwxCY1Hh1fZQoaAZoCWgPQwjyCdl5G+hwQJSGlFKUaBVNxAFoFkdAlqLFtGd7OXV9lChoBmgJaA9DCP0RhgFLmjBAlIaUUpRoFUvJaBZHQJald1PnB+F1fZQoaAZoCWgPQwirdeJyPBZuQJSGlFKUaBVNwAFoFkdAlqW5n6Eal3V9lChoBmgJaA9DCG9+w0RDK3FAlIaUUpRoFU0PAWgWR0CWpmkO7QLNdX2UKGgGaAloD0MIJ/bQPlY5b0CUhpRSlGgVTecBaBZHQJanKDxsl9l1fZQoaAZoCWgPQwhVpS2u8SFtQJSGlFKUaBVNPgFoFkdAlqj6DbrTpnV9lChoBmgJaA9DCAJmvoOfe29AlIaUUpRoFU2FAmgWR0CWqhqG1x82dX2UKGgGaAloD0MIfA3BcRn9bkCUhpRSlGgVTXMBaBZHQJaqcJzDGcZ1fZQoaAZoCWgPQwg91owM8s1mQJSGlFKUaBVN6ANoFkdAlqrtVNpM6HV9lChoBmgJaA9DCHAjZYtkXHFAlIaUUpRoFU3TA2gWR0CWq9d4mkWRdX2UKGgGaAloD0MIBaipZesPcUCUhpRSlGgVTekBaBZHQJavRMQEpy91fZQoaAZoCWgPQwhkBFQ4glxwQJSGlFKUaBVNAQFoFkdAlq/dalk6LnV9lChoBmgJaA9DCNo7o61K/XFAlIaUUpRoFU0zAWgWR0CWr/Zwn6VMdX2UKGgGaAloD0MI1CgkmdWxckCUhpRSlGgVTXgBaBZHQJawyyNXHR11fZQoaAZoCWgPQwjbh7zlKoNwQJSGlFKUaBVL9mgWR0CWssZQHiWFdX2UKGgGaAloD0MImKPH760mcECUhpRSlGgVTR8BaBZHQJazOwJPZZl1fZQoaAZoCWgPQwhqbK8FPV5vQJSGlFKUaBVNDgFoFkdAlrM7JOnEVHV9lChoBmgJaA9DCGrAIOmTi3BAlIaUUpRoFU2BAmgWR0CWs/msvIwNdX2UKGgGaAloD0MIz2kWaHdcP0CUhpRSlGgVS85oFkdAlrQ3Gff4y3V9lChoBmgJaA9DCD4GK0610mxAlIaUUpRoFU0pAWgWR0CWtmVdX1aodX2UKGgGaAloD0MII57sZsafbkCUhpRSlGgVTS4BaBZHQJa5fVG0/np1fZQoaAZoCWgPQwgsDfyohuhwQJSGlFKUaBVN9gJoFkdAlr6ouXeFc3V9lChoBmgJaA9DCGXggJau/HBAlIaUUpRoFU1MAWgWR0CWv7/dqL0jdX2UKGgGaAloD0MIpS+EnPfHb0CUhpRSlGgVS/9oFkdAlsCnVoYek3V9lChoBmgJaA9DCHODoQ4r1nJAlIaUUpRoFU09AWgWR0CWwpfiPyTZdX2UKGgGaAloD0MIvmw7bc3BcECUhpRSlGgVTZgBaBZHQJbDTzMA3kx1fZQoaAZoCWgPQwhiokEKnmlwQJSGlFKUaBVNngFoFkdAlsRmf5DZ13V9lChoBmgJaA9DCJOq7SY4/nBAlIaUUpRoFU1qAWgWR0CWyXyWAwwkdX2UKGgGaAloD0MIZcVwdYCrcUCUhpRSlGgVTTIBaBZHQJbJ7K0UoKF1fZQoaAZoCWgPQwisqME0DKVxQJSGlFKUaBVL3GgWR0CWzFBGx2SudX2UKGgGaAloD0MIvMtFfCdBZ0CUhpRSlGgVTegDaBZHQJbNXWAf+0h1fZQoaAZoCWgPQwhHyhZJ+2ZwQJSGlFKUaBVN2gJoFkdAls6k3n6l+HV9lChoBmgJaA9DCBzO/GqOQXNAlIaUUpRoFU0uAWgWR0CWz7IVM23sdX2UKGgGaAloD0MI6Z51jZYXb0CUhpRSlGgVTVIBaBZHQJbQhSde6Zp1fZQoaAZoCWgPQwhKm6p75BxxQJSGlFKUaBVNKwFoFkdAltKqPXCj13V9lChoBmgJaA9DCGZqErwhnW9AlIaUUpRoFU19AmgWR0CW9kaTwDvFdX2UKGgGaAloD0MI18OXiWIucUCUhpRSlGgVTWMBaBZHQJb2VdWyTpx1fZQoaAZoCWgPQwhgOq3b4DVxQJSGlFKUaBVNngJoFkdAlvbHNX5nDnV9lChoBmgJaA9DCPUUOUQca3JAlIaUUpRoFU3fAmgWR0CW90BvJiiJdX2UKGgGaAloD0MIf4RhwBJCcECUhpRSlGgVTYkDaBZHQJb4bLidat91fZQoaAZoCWgPQwjb3JiesBlxQJSGlFKUaBVNDwFoFkdAlviRKcurZXV9lChoBmgJaA9DCL5KPnaXmWVAlIaUUpRoFU3oA2gWR0CW+PjtG/etdX2UKGgGaAloD0MImShC6vaKcUCUhpRSlGgVTRABaBZHQJb5BlPJq7B1fZQoaAZoCWgPQwjEJFzIo/JuQJSGlFKUaBVNhgFoFkdAlvmO5BkZrHV9lChoBmgJaA9DCOtx32rdIXFAlIaUUpRoFUvtaBZHQJb7SVVxS511fZQoaAZoCWgPQwjo3VhQ2PJxQJSGlFKUaBVNggFoFkdAlwBgFHJ9zHV9lChoBmgJaA9DCPGfbqDAnHFAlIaUUpRoFU1CAWgWR0CXAXq+rU9ZdX2UKGgGaAloD0MIF2cMc8JhcECUhpRSlGgVS/RoFkdAlwHcWfseGXV9lChoBmgJaA9DCECiCRRxXnFAlIaUUpRoFUv2aBZHQJcCdmbsniN1fZQoaAZoCWgPQwiYo8fv7ShuQJSGlFKUaBVNmgFoFkdAlwK0TL4etHV9lChoBmgJaA9DCA1QGmqUw25AlIaUUpRoFU0KAWgWR0CXAwoHLRrrdX2UKGgGaAloD0MI+fVDbLBucUCUhpRSlGgVTQQBaBZHQJcE44m1IAh1fZQoaAZoCWgPQwjl7QinBatvQJSGlFKUaBVNAwFoFkdAlwVJ9NN8E3V9lChoBmgJaA9DCEMewY2U7HJAlIaUUpRoFU1vAWgWR0CXBcJ+2E00dX2UKGgGaAloD0MI0ZSdflC7bUCUhpRSlGgVTQwBaBZHQJcFwdzXBgx1fZQoaAZoCWgPQwhrZi0FJLtxQJSGlFKUaBVNBQFoFkdAlwYD5oGpuXV9lChoBmgJaA9DCOjc7XrpnWBAlIaUUpRoFU3oA2gWR0CXBlSjxkNGdX2UKGgGaAloD0MI5nXEIdsfckCUhpRSlGgVTRkBaBZHQJcIa+7Dl5p1fZQoaAZoCWgPQwj/ImjM5ERyQJSGlFKUaBVNlAFoFkdAlwmSemNzbXV9lChoBmgJaA9DCEFn0qbqqm5AlIaUUpRoFU1AAmgWR0CXC6u1WsBAdX2UKGgGaAloD0MItydIbPe7b0CUhpRSlGgVTU8BaBZHQJcQkSXdCVt1fZQoaAZoCWgPQwiIZp5c0zVxQJSGlFKUaBVNMwFoFkdAlxCtBfKISHV9lChoBmgJaA9DCPGeA8sRpHBAlIaUUpRoFU1KAWgWR0CXETxXXAdodX2UKGgGaAloD0MIpOL/jiglbUCUhpRSlGgVTQkBaBZHQJcRfJSzgMt1fZQoaAZoCWgPQwiSsdr8fx9zQJSGlFKUaBVNVAFoFkdAlxH2SIP9UHV9lChoBmgJaA9DCNyDEJDvsXBAlIaUUpRoFU0wAWgWR0CXEtwWnCO4dX2UKGgGaAloD0MIPq946lEwckCUhpRSlGgVTS8BaBZHQJcThgUlAu91fZQoaAZoCWgPQwgiOC7jJrxvQJSGlFKUaBVL3WgWR0CXE/hXKbKBdX2UKGgGaAloD0MIZRh3g+jVcUCUhpRSlGgVTWACaBZHQJcUU4GUwBZ1fZQoaAZoCWgPQwixUGuad2hyQJSGlFKUaBVN1AFoFkdAlxXEHpr1unV9lChoBmgJaA9DCHdJnBVR63JAlIaUUpRoFU26AWgWR0CXFcTCcf/4dX2UKGgGaAloD0MIeZCeIkc7cUCUhpRSlGgVTX8BaBZHQJcV8LofSx91fZQoaAZoCWgPQwjhfyvZMcdzQJSGlFKUaBVNmQFoFkdAlxect5D7ZXV9lChoBmgJaA9DCOBNt+yQa3JAlIaUUpRoFU2OAWgWR0CXF8Ok+HJtdX2UKGgGaAloD0MIcsXFUTm1cECUhpRSlGgVTUkBaBZHQJcaZ1aGHpN1fZQoaAZoCWgPQwhslstG59xwQJSGlFKUaBVNGAFoFkdAlxzLdepn6HV9lChoBmgJaA9DCKFoHsAiBnJAlIaUUpRoFUv4aBZHQJcdifdyksV1fZQoaAZoCWgPQwimXrcIzBRxQJSGlFKUaBVNLQFoFkdAlx33QY1pCnV9lChoBmgJaA9DCNklqreGXG9AlIaUUpRoFU0AAWgWR0CXHrLSNOuadX2UKGgGaAloD0MIjWMke4SkcECUhpRSlGgVTRABaBZHQJcgAudwvQF1fZQoaAZoCWgPQwj2JRsP9ptwQJSGlFKUaBVNTQFoFkdAlyDn4TK1X3V9lChoBmgJaA9DCA04S8kyGHJAlIaUUpRoFU1aAWgWR0CXIRHVPN3XdX2UKGgGaAloD0MIYroQqz9JckCUhpRSlGgVTScBaBZHQJchkIeHSF51fZQoaAZoCWgPQwhTXcDLTClwQJSGlFKUaBVNHwFoFkdAlyK4TCcf/3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76b64ea6a5b80174ea59965959d52e3eb57341570998508c22732a5b17a0019a
|
3 |
+
size 144034
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f963835f5f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f963835f680>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f963835f710>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f963835f7a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f963835f830>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f963835f8c0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f963835f950>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f963835f9e0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f963835fa70>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f963835fb00>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f963835fb90>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f96383ba060>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652783206.8915734,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpgk7zwVaw+Fw+vvL17gb441Ky8OogovQAAAAAAAAAAZiADvCmsW7wNWIW9OdEwvHWixL0VKBC9AACAPwAAgD/NBgU8rkOCuv7rKLoaxAs1OvblOlIHRTkAAIA/AACAP3MOlj0fhfm5kDR4M0SudCukDNa7hf3RswAAgD8AAIA/LWNWvuF0GT/+hXY9ZOPDvpXmBL6wj9s9AAAAAAAAAAAAz3m94ZSnuht5jzlwiYw0UMCcOl6epLgAAIA/AACAPwC0Zb0LnEo/PFCgO4RTw767obS8GnavOgAAAAAAAAAAmpcPvJDF6D7rsGG+GwTQvit8GL5PJ5m9AAAAAAAAAAAtQms+cIatP4vb6j47TbC+YGSMPopslTwAAAAAAAAAAABx07zDwXC6A+OFO61jfDhLxVQ7Vt5zuQAAgD8AAIA/pjx5PuzggT+4Ebs9xf3Cvuhrej7NwQq+AAAAAAAAAACgRxu+GRafPgWfzjxFPJq+X5A9vHIeJ70AAAAAAAAAAOap1z2qKgM+A1mfvba0g760I4k8aogpPQAAAAAAAAAAzbedPeyJ8LlQnbu7Qg4COCIjkrpCgCW3AAAAAAAAAADAKn++qLU/P0B+5L1FFNm+Fr5lvtraobwAAAAAAAAAAA0alT0UUJO6cIJUOfOTRTTAwwW6CNh1uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEayql9+WckCUhpRSlIwBbJRNGAGMAXSUR0CWbMOY6XBydX2UKGgGaAloD0MI5J8ZxAcBcUCUhpRSlGgVTSQCaBZHQJZtSxmkFfR1fZQoaAZoCWgPQwizYU1lUVxxQJSGlFKUaBVNGwJoFkdAlm4pyU9py3V9lChoBmgJaA9DCLb2PlUFa21AlIaUUpRoFU3uAmgWR0CWbtlAeJYUdX2UKGgGaAloD0MIi6n0E05zb0CUhpRSlGgVTdwBaBZHQJZwQIv8IiV1fZQoaAZoCWgPQwhfKGA7WB5wQJSGlFKUaBVNYAFoFkdAlnGgyylennV9lChoBmgJaA9DCIiFWtM82W9AlIaUUpRoFUv7aBZHQJZ0PY4ACGN1fZQoaAZoCWgPQwjMeca+ZI85QJSGlFKUaBVLvmgWR0CWdrfoA4n4dX2UKGgGaAloD0MIMzffiO7IUECUhpRSlGgVS8JoFkdAlnd2h7E5yXV9lChoBmgJaA9DCEkvavdrEnFAlIaUUpRoFU17AWgWR0CWeKuuA7PqdX2UKGgGaAloD0MIaHdIMUBlcECUhpRSlGgVTY0BaBZHQJZ4uXKKYRd1fZQoaAZoCWgPQwiE1VjC2rRIQJSGlFKUaBVLt2gWR0CWebkfcN6PdX2UKGgGaAloD0MI3lhQGNQhcUCUhpRSlGgVTcgBaBZHQJZ7Pcwg1WN1fZQoaAZoCWgPQwiim/2B8i1yQJSGlFKUaBVNmQJoFkdAlntLah6By3V9lChoBmgJaA9DCOUqFr8paWJAlIaUUpRoFU3oA2gWR0CWfif2bobGdX2UKGgGaAloD0MInwWhvM/ScECUhpRSlGgVTSYBaBZHQJaAwxCY1Hh1fZQoaAZoCWgPQwjyCdl5G+hwQJSGlFKUaBVNxAFoFkdAlqLFtGd7OXV9lChoBmgJaA9DCP0RhgFLmjBAlIaUUpRoFUvJaBZHQJald1PnB+F1fZQoaAZoCWgPQwirdeJyPBZuQJSGlFKUaBVNwAFoFkdAlqW5n6Eal3V9lChoBmgJaA9DCG9+w0RDK3FAlIaUUpRoFU0PAWgWR0CWpmkO7QLNdX2UKGgGaAloD0MIJ/bQPlY5b0CUhpRSlGgVTecBaBZHQJanKDxsl9l1fZQoaAZoCWgPQwhVpS2u8SFtQJSGlFKUaBVNPgFoFkdAlqj6DbrTpnV9lChoBmgJaA9DCAJmvoOfe29AlIaUUpRoFU2FAmgWR0CWqhqG1x82dX2UKGgGaAloD0MIfA3BcRn9bkCUhpRSlGgVTXMBaBZHQJaqcJzDGcZ1fZQoaAZoCWgPQwg91owM8s1mQJSGlFKUaBVN6ANoFkdAlqrtVNpM6HV9lChoBmgJaA9DCHAjZYtkXHFAlIaUUpRoFU3TA2gWR0CWq9d4mkWRdX2UKGgGaAloD0MIBaipZesPcUCUhpRSlGgVTekBaBZHQJavRMQEpy91fZQoaAZoCWgPQwhkBFQ4glxwQJSGlFKUaBVNAQFoFkdAlq/dalk6LnV9lChoBmgJaA9DCNo7o61K/XFAlIaUUpRoFU0zAWgWR0CWr/Zwn6VMdX2UKGgGaAloD0MI1CgkmdWxckCUhpRSlGgVTXgBaBZHQJawyyNXHR11fZQoaAZoCWgPQwjbh7zlKoNwQJSGlFKUaBVL9mgWR0CWssZQHiWFdX2UKGgGaAloD0MImKPH760mcECUhpRSlGgVTR8BaBZHQJazOwJPZZl1fZQoaAZoCWgPQwhqbK8FPV5vQJSGlFKUaBVNDgFoFkdAlrM7JOnEVHV9lChoBmgJaA9DCGrAIOmTi3BAlIaUUpRoFU2BAmgWR0CWs/msvIwNdX2UKGgGaAloD0MIz2kWaHdcP0CUhpRSlGgVS85oFkdAlrQ3Gff4y3V9lChoBmgJaA9DCD4GK0610mxAlIaUUpRoFU0pAWgWR0CWtmVdX1aodX2UKGgGaAloD0MII57sZsafbkCUhpRSlGgVTS4BaBZHQJa5fVG0/np1fZQoaAZoCWgPQwgsDfyohuhwQJSGlFKUaBVN9gJoFkdAlr6ouXeFc3V9lChoBmgJaA9DCGXggJau/HBAlIaUUpRoFU1MAWgWR0CWv7/dqL0jdX2UKGgGaAloD0MIpS+EnPfHb0CUhpRSlGgVS/9oFkdAlsCnVoYek3V9lChoBmgJaA9DCHODoQ4r1nJAlIaUUpRoFU09AWgWR0CWwpfiPyTZdX2UKGgGaAloD0MIvmw7bc3BcECUhpRSlGgVTZgBaBZHQJbDTzMA3kx1fZQoaAZoCWgPQwhiokEKnmlwQJSGlFKUaBVNngFoFkdAlsRmf5DZ13V9lChoBmgJaA9DCJOq7SY4/nBAlIaUUpRoFU1qAWgWR0CWyXyWAwwkdX2UKGgGaAloD0MIZcVwdYCrcUCUhpRSlGgVTTIBaBZHQJbJ7K0UoKF1fZQoaAZoCWgPQwisqME0DKVxQJSGlFKUaBVL3GgWR0CWzFBGx2SudX2UKGgGaAloD0MIvMtFfCdBZ0CUhpRSlGgVTegDaBZHQJbNXWAf+0h1fZQoaAZoCWgPQwhHyhZJ+2ZwQJSGlFKUaBVN2gJoFkdAls6k3n6l+HV9lChoBmgJaA9DCBzO/GqOQXNAlIaUUpRoFU0uAWgWR0CWz7IVM23sdX2UKGgGaAloD0MI6Z51jZYXb0CUhpRSlGgVTVIBaBZHQJbQhSde6Zp1fZQoaAZoCWgPQwhKm6p75BxxQJSGlFKUaBVNKwFoFkdAltKqPXCj13V9lChoBmgJaA9DCGZqErwhnW9AlIaUUpRoFU19AmgWR0CW9kaTwDvFdX2UKGgGaAloD0MI18OXiWIucUCUhpRSlGgVTWMBaBZHQJb2VdWyTpx1fZQoaAZoCWgPQwhgOq3b4DVxQJSGlFKUaBVNngJoFkdAlvbHNX5nDnV9lChoBmgJaA9DCPUUOUQca3JAlIaUUpRoFU3fAmgWR0CW90BvJiiJdX2UKGgGaAloD0MIf4RhwBJCcECUhpRSlGgVTYkDaBZHQJb4bLidat91fZQoaAZoCWgPQwjb3JiesBlxQJSGlFKUaBVNDwFoFkdAlviRKcurZXV9lChoBmgJaA9DCL5KPnaXmWVAlIaUUpRoFU3oA2gWR0CW+PjtG/etdX2UKGgGaAloD0MImShC6vaKcUCUhpRSlGgVTRABaBZHQJb5BlPJq7B1fZQoaAZoCWgPQwjEJFzIo/JuQJSGlFKUaBVNhgFoFkdAlvmO5BkZrHV9lChoBmgJaA9DCOtx32rdIXFAlIaUUpRoFUvtaBZHQJb7SVVxS511fZQoaAZoCWgPQwjo3VhQ2PJxQJSGlFKUaBVNggFoFkdAlwBgFHJ9zHV9lChoBmgJaA9DCPGfbqDAnHFAlIaUUpRoFU1CAWgWR0CXAXq+rU9ZdX2UKGgGaAloD0MIF2cMc8JhcECUhpRSlGgVS/RoFkdAlwHcWfseGXV9lChoBmgJaA9DCECiCRRxXnFAlIaUUpRoFUv2aBZHQJcCdmbsniN1fZQoaAZoCWgPQwiYo8fv7ShuQJSGlFKUaBVNmgFoFkdAlwK0TL4etHV9lChoBmgJaA9DCA1QGmqUw25AlIaUUpRoFU0KAWgWR0CXAwoHLRrrdX2UKGgGaAloD0MI+fVDbLBucUCUhpRSlGgVTQQBaBZHQJcE44m1IAh1fZQoaAZoCWgPQwjl7QinBatvQJSGlFKUaBVNAwFoFkdAlwVJ9NN8E3V9lChoBmgJaA9DCEMewY2U7HJAlIaUUpRoFU1vAWgWR0CXBcJ+2E00dX2UKGgGaAloD0MI0ZSdflC7bUCUhpRSlGgVTQwBaBZHQJcFwdzXBgx1fZQoaAZoCWgPQwhrZi0FJLtxQJSGlFKUaBVNBQFoFkdAlwYD5oGpuXV9lChoBmgJaA9DCOjc7XrpnWBAlIaUUpRoFU3oA2gWR0CXBlSjxkNGdX2UKGgGaAloD0MI5nXEIdsfckCUhpRSlGgVTRkBaBZHQJcIa+7Dl5p1fZQoaAZoCWgPQwj/ImjM5ERyQJSGlFKUaBVNlAFoFkdAlwmSemNzbXV9lChoBmgJaA9DCEFn0qbqqm5AlIaUUpRoFU1AAmgWR0CXC6u1WsBAdX2UKGgGaAloD0MItydIbPe7b0CUhpRSlGgVTU8BaBZHQJcQkSXdCVt1fZQoaAZoCWgPQwiIZp5c0zVxQJSGlFKUaBVNMwFoFkdAlxCtBfKISHV9lChoBmgJaA9DCPGeA8sRpHBAlIaUUpRoFU1KAWgWR0CXETxXXAdodX2UKGgGaAloD0MIpOL/jiglbUCUhpRSlGgVTQkBaBZHQJcRfJSzgMt1fZQoaAZoCWgPQwiSsdr8fx9zQJSGlFKUaBVNVAFoFkdAlxH2SIP9UHV9lChoBmgJaA9DCNyDEJDvsXBAlIaUUpRoFU0wAWgWR0CXEtwWnCO4dX2UKGgGaAloD0MIPq946lEwckCUhpRSlGgVTS8BaBZHQJcThgUlAu91fZQoaAZoCWgPQwgiOC7jJrxvQJSGlFKUaBVL3WgWR0CXE/hXKbKBdX2UKGgGaAloD0MIZRh3g+jVcUCUhpRSlGgVTWACaBZHQJcUU4GUwBZ1fZQoaAZoCWgPQwixUGuad2hyQJSGlFKUaBVN1AFoFkdAlxXEHpr1unV9lChoBmgJaA9DCHdJnBVR63JAlIaUUpRoFU26AWgWR0CXFcTCcf/4dX2UKGgGaAloD0MIeZCeIkc7cUCUhpRSlGgVTX8BaBZHQJcV8LofSx91fZQoaAZoCWgPQwjhfyvZMcdzQJSGlFKUaBVNmQFoFkdAlxect5D7ZXV9lChoBmgJaA9DCOBNt+yQa3JAlIaUUpRoFU2OAWgWR0CXF8Ok+HJtdX2UKGgGaAloD0MIcsXFUTm1cECUhpRSlGgVTUkBaBZHQJcaZ1aGHpN1fZQoaAZoCWgPQwhslstG59xwQJSGlFKUaBVNGAFoFkdAlxzLdepn6HV9lChoBmgJaA9DCKFoHsAiBnJAlIaUUpRoFUv4aBZHQJcdifdyksV1fZQoaAZoCWgPQwimXrcIzBRxQJSGlFKUaBVNLQFoFkdAlx33QY1pCnV9lChoBmgJaA9DCNklqreGXG9AlIaUUpRoFU0AAWgWR0CXHrLSNOuadX2UKGgGaAloD0MIjWMke4SkcECUhpRSlGgVTRABaBZHQJcgAudwvQF1fZQoaAZoCWgPQwj2JRsP9ptwQJSGlFKUaBVNTQFoFkdAlyDn4TK1X3V9lChoBmgJaA9DCA04S8kyGHJAlIaUUpRoFU1aAWgWR0CXIRHVPN3XdX2UKGgGaAloD0MIYroQqz9JckCUhpRSlGgVTScBaBZHQJchkIeHSF51fZQoaAZoCWgPQwhTXcDLTClwQJSGlFKUaBVNHwFoFkdAlyK4TCcf/3VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e23ee97cb630e826cb2eb674078218e4a2f4b1037c85084f7884a044b84caf92
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:170094177b83f591270284ca8dd1aad0651e757afbb0626b444c8a54e1cee001
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13695d33fdc2de88cd12c0b3caf77474c571c8c3a678a34e88efbe2516c292d8
|
3 |
+
size 241615
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 267.3509415317624, "std_reward": 17.621032208234645, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-17T10:52:26.238770"}
|