showgan's picture
Training in progress, step 1000
09b13b3 verified
import argparse
import os
import numpy as np
import itertools
from pathlib import Path
import datetime
import time
import sys
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomCrop, RandomHorizontalFlip
from torchvision.utils import save_image, make_grid
from torch.utils.data import DataLoader
from modeling_cyclegan import GeneratorResNet, Discriminator
from utils import ReplayBuffer, LambdaLR
from datasets import load_dataset
from accelerate import Accelerator
import torch.nn as nn
import torch
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--num_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="huggan/facades", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--beta1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--beta2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--num_workers", type=int, default=8, help="Number of CPU threads to use during batch generation")
parser.add_argument("--image_size", type=int, default=256, help="Size of images for training")
parser.add_argument("--channels", type=int, default=3, help="Number of image channels")
parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving generator outputs")
parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between saving model checkpoints")
parser.add_argument("--n_residual_blocks", type=int, default=9, help="number of residual blocks in generator")
parser.add_argument("--lambda_cyc", type=float, default=10.0, help="cycle loss weight")
parser.add_argument("--lambda_id", type=float, default=5.0, help="identity loss weight")
parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model to the HuggingFace hub after training.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
required="--push_to_hub" in sys.argv,
type=Path,
help="Path to save the model. Will be created if it doesn't exist already.",
)
parser.add_argument(
"--model_name",
required="--push_to_hub" in sys.argv,
type=str,
help="Name of the model on the hub.",
)
parser.add_argument(
"--organization_name",
required=False,
default="huggan",
type=str,
help="Organization name to push to, in case args.push_to_hub is specified.",
)
return parser.parse_args(args=args)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
if hasattr(m, "bias") and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def training_function(config, args):
accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu, mixed_precision=args.mixed_precision)
# Create sample and checkpoint directories
os.makedirs("images/%s" % args.dataset_name, exist_ok=True)
os.makedirs("saved_models/%s" % args.dataset_name, exist_ok=True)
# Losses
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()
input_shape = (args.channels, args.image_size, args.image_size)
# Calculate output shape of image discriminator (PatchGAN)
output_shape = (1, args.image_size // 2 ** 4, args.image_size // 2 ** 4)
# Initialize generator and discriminator
G_AB = GeneratorResNet(input_shape, args.n_residual_blocks)
G_BA = GeneratorResNet(input_shape, args.n_residual_blocks)
D_A = Discriminator(args.channels)
D_B = Discriminator(args.channels)
if args.epoch != 0:
# Load pretrained models
G_AB.load_state_dict(torch.load("saved_models/%s/G_AB_%d.pth" % (args.dataset_name, args.epoch)))
G_BA.load_state_dict(torch.load("saved_models/%s/G_BA_%d.pth" % (args.dataset_name, args.epoch)))
D_A.load_state_dict(torch.load("saved_models/%s/D_A_%d.pth" % (args.dataset_name, args.epoch)))
D_B.load_state_dict(torch.load("saved_models/%s/D_B_%d.pth" % (args.dataset_name, args.epoch)))
else:
# Initialize weights
G_AB.apply(weights_init_normal)
G_BA.apply(weights_init_normal)
D_A.apply(weights_init_normal)
D_B.apply(weights_init_normal)
# Optimizers
optimizer_G = torch.optim.Adam(
itertools.chain(G_AB.parameters(), G_BA.parameters()), lr=args.lr, betas=(args.beta1, args.beta2)
)
optimizer_D_A = torch.optim.Adam(D_A.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
optimizer_D_B = torch.optim.Adam(D_B.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
# Learning rate update schedulers
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(
optimizer_G, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step
)
lr_scheduler_D_A = torch.optim.lr_scheduler.LambdaLR(
optimizer_D_A, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step
)
lr_scheduler_D_B = torch.optim.lr_scheduler.LambdaLR(
optimizer_D_B, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step
)
# Buffers of previously generated samples
fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()
# Image transformations
transform = Compose([
Resize(int(args.image_size * 1.12), Image.BICUBIC),
RandomCrop((args.image_size, args.image_size)),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
def transforms(examples):
examples["A"] = [transform(image.convert("RGB")) for image in examples["imageA"]]
examples["B"] = [transform(image.convert("RGB")) for image in examples["imageB"]]
del examples["imageA"]
del examples["imageB"]
return examples
dataset = load_dataset(args.dataset_name)
transformed_dataset = dataset.with_transform(transforms)
splits = transformed_dataset['train'].train_test_split(test_size=0.1)
train_ds = splits['train']
val_ds = splits['test']
dataloader = DataLoader(train_ds, shuffle=True, batch_size=args.batch_size, num_workers=args.num_workers)
val_dataloader = DataLoader(val_ds, batch_size=5, shuffle=True, num_workers=1)
def sample_images(batches_done):
"""Saves a generated sample from the test set"""
batch = next(iter(val_dataloader))
G_AB.eval()
G_BA.eval()
real_A = batch["A"]
fake_B = G_AB(real_A)
real_B = batch["B"]
fake_A = G_BA(real_B)
# Arange images along x-axis
real_A = make_grid(real_A, nrow=5, normalize=True)
real_B = make_grid(real_B, nrow=5, normalize=True)
fake_A = make_grid(fake_A, nrow=5, normalize=True)
fake_B = make_grid(fake_B, nrow=5, normalize=True)
# Arange images along y-axis
image_grid = torch.cat((real_A, fake_B, real_B, fake_A), 1)
save_image(image_grid, "images/%s/%s.png" % (args.dataset_name, batches_done), normalize=False)
G_AB, G_BA, D_A, D_B, optimizer_G, optimizer_D_A, optimizer_D_B, dataloader, val_dataloader = accelerator.prepare(G_AB, G_BA, D_A, D_B, optimizer_G, optimizer_D_A, optimizer_D_B, dataloader, val_dataloader)
# ----------
# Training
# ----------
prev_time = time.time()
for epoch in range(args.epoch, args.num_epochs):
for i, batch in enumerate(dataloader):
# Set model input
real_A = batch["A"]
real_B = batch["B"]
# Adversarial ground truths
valid = torch.ones((real_A.size(0), *output_shape), device=accelerator.device)
fake = torch.zeros((real_A.size(0), *output_shape), device=accelerator.device)
# ------------------
# Train Generators
# ------------------
G_AB.train()
G_BA.train()
optimizer_G.zero_grad()
# Identity loss
loss_id_A = criterion_identity(G_BA(real_A), real_A)
loss_id_B = criterion_identity(G_AB(real_B), real_B)
loss_identity = (loss_id_A + loss_id_B) / 2
# GAN loss
fake_B = G_AB(real_A)
loss_GAN_AB = criterion_GAN(D_B(fake_B), valid)
fake_A = G_BA(real_B)
loss_GAN_BA = criterion_GAN(D_A(fake_A), valid)
loss_GAN = (loss_GAN_AB + loss_GAN_BA) / 2
# Cycle loss
recov_A = G_BA(fake_B)
loss_cycle_A = criterion_cycle(recov_A, real_A)
recov_B = G_AB(fake_A)
loss_cycle_B = criterion_cycle(recov_B, real_B)
loss_cycle = (loss_cycle_A + loss_cycle_B) / 2
# Total loss
loss_G = loss_GAN + args.lambda_cyc * loss_cycle + args.lambda_id * loss_identity
accelerator.backward(loss_G)
optimizer_G.step()
# -----------------------
# Train Discriminator A
# -----------------------
optimizer_D_A.zero_grad()
# Real loss
loss_real = criterion_GAN(D_A(real_A), valid)
# Fake loss (on batch of previously generated samples)
fake_A_ = fake_A_buffer.push_and_pop(fake_A)
loss_fake = criterion_GAN(D_A(fake_A_.detach()), fake)
# Total loss
loss_D_A = (loss_real + loss_fake) / 2
accelerator.backward(loss_D_A)
optimizer_D_A.step()
# -----------------------
# Train Discriminator B
# -----------------------
optimizer_D_B.zero_grad()
# Real loss
loss_real = criterion_GAN(D_B(real_B), valid)
# Fake loss (on batch of previously generated samples)
fake_B_ = fake_B_buffer.push_and_pop(fake_B)
loss_fake = criterion_GAN(D_B(fake_B_.detach()), fake)
# Total loss
loss_D_B = (loss_real + loss_fake) / 2
accelerator.backward(loss_D_B)
optimizer_D_B.step()
loss_D = (loss_D_A + loss_D_B) / 2
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = args.num_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, adv: %f, cycle: %f, identity: %f] ETA: %s"
% (
epoch,
args.num_epochs,
i,
len(dataloader),
loss_D.item(),
loss_G.item(),
loss_GAN.item(),
loss_cycle.item(),
loss_identity.item(),
time_left,
)
)
# If at sample interval save image
if batches_done % args.sample_interval == 0:
sample_images(batches_done)
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D_A.step()
lr_scheduler_D_B.step()
if args.checkpoint_interval != -1 and epoch % args.checkpoint_interval == 0:
# Save model checkpoints
torch.save(G_AB.state_dict(), "saved_models/%s/G_AB_%d.pth" % (args.dataset_name, epoch))
torch.save(G_BA.state_dict(), "saved_models/%s/G_BA_%d.pth" % (args.dataset_name, epoch))
torch.save(D_A.state_dict(), "saved_models/%s/D_A_%d.pth" % (args.dataset_name, epoch))
torch.save(D_B.state_dict(), "saved_models/%s/D_B_%d.pth" % (args.dataset_name, epoch))
# Optionally push to hub
if args.push_to_hub:
save_directory = args.pytorch_dump_folder_path
if not save_directory.exists():
save_directory.mkdir(parents=True)
G_AB.push_to_hub(
repo_path_or_name=save_directory / args.model_name,
organization=args.organization_name,
)
def main():
args = parse_args()
print(args)
# Make directory for saving generated images
os.makedirs("images", exist_ok=True)
training_function({}, args)
if __name__ == "__main__":
main()