|
|
|
|
|
from datasets import load_dataset, DatasetDict, Audio |
|
from transformers import (WhisperTokenizer, WhisperFeatureExtractor, |
|
WhisperProcessor, WhisperForConditionalGeneration, |
|
Seq2SeqTrainingArguments, Seq2SeqTrainer) |
|
from transformers.models.whisper.english_normalizer import BasicTextNormalizer |
|
import torch |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Union |
|
import evaluate |
|
common_voice = DatasetDict() |
|
common_voice["train"] = load_dataset("mozilla-foundation/common_voice_11_0", |
|
"hi", |
|
split="train+validation", |
|
token=True) |
|
common_voice["test"] = load_dataset("mozilla-foundation/common_voice_11_0", |
|
"hi", |
|
split="test", |
|
token=True) |
|
print(f'YYY1a {common_voice=}') |
|
common_voice = common_voice.remove_columns([ |
|
"accent", "age", "client_id", "down_votes", "gender", "locale", "path", "segment", "up_votes"]) |
|
print(f'YYY1b {common_voice=}') |
|
print(f'YYY2 {type(common_voice)=}') |
|
feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-small") |
|
tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-small", |
|
language="Hindi", task="transcribe") |
|
processor = WhisperProcessor.from_pretrained("openai/whisper-small", |
|
language="Hindi", task="transcribe") |
|
print(common_voice["train"][0]) |
|
common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) |
|
print(common_voice["train"][0]) |
|
do_lower_case = False |
|
do_remove_punctuation = False |
|
normalizer = BasicTextNormalizer() |
|
|
|
|
|
def prepare_dataset(batch): |
|
audio = batch["audio"] |
|
batch["input_features"] = processor.feature_extractor( |
|
audio["array"], sampling_rate=audio["sampling_rate"]).input_features[0] |
|
batch["input_length"] = len(audio["array"]) / audio["sampling_rate"] |
|
transcription = batch["sentence"] |
|
if do_lower_case: |
|
transcription = transcription.lower() |
|
if do_remove_punctuation: |
|
transcription = normalizer(transcription).strip() |
|
batch["labels"] = processor.tokenizer(transcription).input_ids |
|
return batch |
|
|
|
|
|
common_voice = common_voice.map(prepare_dataset, |
|
remove_columns=common_voice.column_names["train"], |
|
num_proc=2) |
|
max_input_length = 30.0 |
|
|
|
|
|
def is_audio_in_length_range(length): |
|
return length < max_input_length |
|
|
|
|
|
common_voice["train"] = common_voice["train"].filter( |
|
is_audio_in_length_range, |
|
input_columns=["input_length"], |
|
) |
|
|
|
|
|
@dataclass |
|
class DataCollatorSpeechSeq2SeqWithPadding: |
|
processor: Any |
|
|
|
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]])\ |
|
-> Dict[str, torch.Tensor]: |
|
input_features = [{"input_features": feature["input_features"]} for feature in features] |
|
batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") |
|
label_features = [{"input_ids": feature["labels"]} for feature in features] |
|
labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") |
|
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) |
|
if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): |
|
labels = labels[:, 1:] |
|
batch["labels"] = labels |
|
return batch |
|
|
|
|
|
data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) |
|
metric = evaluate.load("wer") |
|
do_normalize_eval = True |
|
|
|
|
|
def compute_metrics(pred): |
|
pred_ids = pred.predictions |
|
label_ids = pred.label_ids |
|
label_ids[label_ids == -100] = processor.tokenizer.pad_token_id |
|
pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True) |
|
label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True) |
|
if do_normalize_eval: |
|
pred_str = [normalizer(pred) for pred in pred_str] |
|
label_str = [normalizer(label) for label in label_str] |
|
wer = 100 * metric.compute(predictions=pred_str, references=label_str) |
|
return {"wer": wer} |
|
|
|
|
|
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") |
|
model.generation_config.language = "hi" |
|
model.config.forced_decoder_ids = None |
|
model.config.suppress_tokens = [] |
|
model.config.use_cache = False |
|
training_args = Seq2SeqTrainingArguments( |
|
output_dir="./", |
|
per_device_train_batch_size=8, |
|
gradient_accumulation_steps=8, |
|
learning_rate=1e-5, |
|
warmup_steps=500, |
|
max_steps=5000, |
|
gradient_checkpointing=True, |
|
fp16=True, |
|
evaluation_strategy="steps", |
|
per_device_eval_batch_size=4, |
|
predict_with_generate=True, |
|
generation_max_length=225, |
|
save_steps=1000, |
|
eval_steps=1000, |
|
logging_steps=25, |
|
report_to=["tensorboard"], |
|
load_best_model_at_end=True, |
|
metric_for_best_model="wer", |
|
greater_is_better=False, |
|
push_to_hub=True, |
|
) |
|
trainer = Seq2SeqTrainer( |
|
args=training_args, |
|
model=model, |
|
train_dataset=common_voice["train"], |
|
eval_dataset=common_voice["test"], |
|
data_collator=data_collator, |
|
compute_metrics=compute_metrics, |
|
tokenizer=processor.feature_extractor, |
|
) |
|
processor.save_pretrained(training_args.output_dir) |
|
trainer.train() |
|
kwargs = { |
|
"dataset_tags": "mozilla-foundation/common_voice_11_0", |
|
"dataset": "Common Voice 11.0", |
|
"language": "hi", |
|
"model_name": "Whisper Small Hi - Sanchit Gandhi", |
|
"finetuned_from": "openai/whisper-small", |
|
"tasks": "automatic-speech-recognition", |
|
"tags": "whisper-event", |
|
} |
|
trainer.push_to_hub(**kwargs) |
|
|