***** Test results ***** Thu Sep 22 07:44:16 2022 Task: ner Model path: bert-base-uncased Data path: ./data/ud/ Tokenizer: bert-base-uncased Batch size: 32 Epoch: 7 Learning rate: 2e-05 LR Decay End Factor: 0.3LR Decay End Epoch: 5Sequence length: 96 Training: True Num Threads: 24 Num Sentences: 0 Max Grad Norm: 0.0 Use GNN: False Syntax graph style: dep Use label weights: False Clip value: 50 precision recall f1-score support CARDINAL 0.7030 0.6225 0.6603 612 DATE 0.7036 0.7177 0.7106 1045 EVENT 0.4133 0.3875 0.4000 80 FAC 0.3661 0.4437 0.4012 151 GPE 0.8721 0.8667 0.8694 1936 LANGUAGE 0.5758 0.2468 0.3455 77 LAW 0.3621 0.3684 0.3652 57 LOC 0.4978 0.5115 0.5045 217 MONEY 0.5849 0.5082 0.5439 61 NORP 0.6927 0.7156 0.7040 422 ORDINAL 0.8035 0.8129 0.8081 171 ORG 0.5158 0.5893 0.5501 857 PERCENT 0.3878 0.5278 0.4471 36 PERSON 0.7476 0.7994 0.7726 1371 PRODUCT 0.2742 0.3469 0.3063 98 QUANTITY 0.3443 0.3962 0.3684 53 SEP] 0.0000 0.0000 0.0000 0 TIME 0.5816 0.6495 0.6137 214 WORK_OF_ART 0.3544 0.2154 0.2679 130 micro avg 0.6680 0.7080 0.6874 7588 macro avg 0.5148 0.5119 0.5073 7588 weighted avg 0.6955 0.7080 0.6998 7588 Special token predictions: 0