shreyansjain commited on
Commit
73c29f1
·
1 Parent(s): deae006

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 261.40 +/- 16.25
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f402aade280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f402aade310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f402aade3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f402aade430>", "_build": "<function ActorCriticPolicy._build at 0x7f402aade4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f402aade550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f402aade5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f402aade670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f402aade700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f402aade790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f402aade820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f402aade8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f402aad8900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678122152101171856, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9PkoI65EYkCUhpRSlIwBbJRN6AOMAXSUR0CTI7EQGwA3dX2UKGgGaAloD0MIr3srEhPuZkCUhpRSlGgVTegDaBZHQJMk/A31jAl1fZQoaAZoCWgPQwioGVJF8eRfQJSGlFKUaBVN6ANoFkdAkyXdX9zfanV9lChoBmgJaA9DCH0DkxvFWmJAlIaUUpRoFU3oA2gWR0CTK16rvLHNdX2UKGgGaAloD0MIJXoZxXI1ZUCUhpRSlGgVTegDaBZHQJMtdkMCtA91fZQoaAZoCWgPQwjbbKzEPG9jQJSGlFKUaBVN6ANoFkdAkzRc9W6shnV9lChoBmgJaA9DCGHFqdbCQEhAlIaUUpRoFU0dAWgWR0CTNNZ0CA+ZdX2UKGgGaAloD0MIlugss4hmYECUhpRSlGgVTegDaBZHQJM3PsNUfgd1fZQoaAZoCWgPQwg8LxUb8/hjQJSGlFKUaBVN6ANoFkdAkz1PtY0VJ3V9lChoBmgJaA9DCCIZcmw9L2dAlIaUUpRoFU3oA2gWR0CTREJUo8ZDdX2UKGgGaAloD0MI+n3/5kVIYUCUhpRSlGgVTegDaBZHQJNEwQRPGhp1fZQoaAZoCWgPQwhkyRzLu/ZmQJSGlFKUaBVN6ANoFkdAk2tBMSK3u3V9lChoBmgJaA9DCJmesMSDemBAlIaUUpRoFU3oA2gWR0CTa8iLEUCadX2UKGgGaAloD0MI3nU25J+UZUCUhpRSlGgVTegDaBZHQJNsZXeWOZN1fZQoaAZoCWgPQwhO7QxTW/RmQJSGlFKUaBVN6ANoFkdAk23TQJHAh3V9lChoBmgJaA9DCIBG6dI/QmNAlIaUUpRoFU3oA2gWR0CTdOtqHoHLdX2UKGgGaAloD0MI9BWkGYviX0CUhpRSlGgVTegDaBZHQJN2C7jDKo11fZQoaAZoCWgPQwhblq/L8KtiQJSGlFKUaBVN6ANoFkdAk3bHaSLZSXV9lChoBmgJaA9DCB5tHLEWKWZAlIaUUpRoFU3oA2gWR0CTeFYl6Z6VdX2UKGgGaAloD0MIPlsHB3v5XkCUhpRSlGgVTegDaBZHQJOAb4Kx9oh1fZQoaAZoCWgPQwj/sRAdglpkQJSGlFKUaBVN6ANoFkdAk4PAr1/UfHV9lChoBmgJaA9DCAmocAQpimFAlIaUUpRoFU3oA2gWR0CTjqROUMXrdX2UKGgGaAloD0MIl/4lqUwNXkCUhpRSlGgVTegDaBZHQJOPXuAqd6N1fZQoaAZoCWgPQwgtX5fhv+JmQJSGlFKUaBVN6ANoFkdAk5I8OoYNzHV9lChoBmgJaA9DCPGeA8uReWJAlIaUUpRoFU3oA2gWR0CTmD/7SApbdX2UKGgGaAloD0MIIzFBDd8iX0CUhpRSlGgVTegDaBZHQJOejSiM5wR1fZQoaAZoCWgPQwjqk9xhExxoQJSGlFKUaBVN6ANoFkdAk57ZSJj2BnV9lChoBmgJaA9DCCRh304imWBAlIaUUpRoFU3oA2gWR0CTwehxo7FLdX2UKGgGaAloD0MIVVG8yloeY0CUhpRSlGgVTegDaBZHQJPCm5LAYYR1fZQoaAZoCWgPQwhccXFUbhtmQJSGlFKUaBVN6ANoFkdAk8Nuuieum3V9lChoBmgJaA9DCO8a9KW3O2JAlIaUUpRoFU3oA2gWR0CTxW+BH09RdX2UKGgGaAloD0MIx9gJL8GEZkCUhpRSlGgVTegDaBZHQJPNukLx7Rh1fZQoaAZoCWgPQwh55XrbTOxhQJSGlFKUaBVN6ANoFkdAk86+IAOrhnV9lChoBmgJaA9DCGxc/65P12NAlIaUUpRoFU3oA2gWR0CTz2Gj9GZvdX2UKGgGaAloD0MICoZzDTNBZ0CUhpRSlGgVTegDaBZHQJPQtrcj7hx1fZQoaAZoCWgPQwiPccXFUV1hQJSGlFKUaBVN6ANoFkdAk9dV1jiGWXV9lChoBmgJaA9DCLhAguLHz2JAlIaUUpRoFU3oA2gWR0CT2XN8ma6SdX2UKGgGaAloD0MIaY6s/LJqY0CUhpRSlGgVTegDaBZHQJPfz05EMLF1fZQoaAZoCWgPQwgvFLAdjPpjQJSGlFKUaBVN6ANoFkdAk+A7or4FinV9lChoBmgJaA9DCGoV/aEZ92BAlIaUUpRoFU3oA2gWR0CT4mJng5zYdX2UKGgGaAloD0MIXvbrTvciYUCUhpRSlGgVTegDaBZHQJPnq4axX4l1fZQoaAZoCWgPQwisPIGwUxxJQJSGlFKUaBVNJwFoFkdAk+j3rD63zHV9lChoBmgJaA9DCOT2yycr7XBAlIaUUpRoFU3CAmgWR0CT6jGd7OVxdX2UKGgGaAloD0MIfv/mxYkIY0CUhpRSlGgVTegDaBZHQJPtHYVZcLV1fZQoaAZoCWgPQwhHxmrz/z9lQJSGlFKUaBVN6ANoFkdAk+1YcFQl8nV9lChoBmgJaA9DCCGtMeiELHFAlIaUUpRoFU16AWgWR0CT9o67dznzdX2UKGgGaAloD0MI0eejjLgQJ0CUhpRSlGgVTQkBaBZHQJQRMsXizcB1fZQoaAZoCWgPQwjS/3It2shiQJSGlFKUaBVN6ANoFkdAlBHCd4FA3XV9lChoBmgJaA9DCJzCSgWVXmRAlIaUUpRoFU3oA2gWR0CUEikwN9YwdX2UKGgGaAloD0MIPQ0YJH35YUCUhpRSlGgVTegDaBZHQJQT2rksBhh1fZQoaAZoCWgPQwgSa/EpAMllQJSGlFKUaBVN6ANoFkdAlBopLIxQBXV9lChoBmgJaA9DCPJ7m/7scUBAlIaUUpRoFUvfaBZHQJQaiKQ7tAt1fZQoaAZoCWgPQwh2jZYDPUdjQJSGlFKUaBVN6ANoFkdAlBsvL5h0AHV9lChoBmgJaA9DCOpdvB83QGNAlIaUUpRoFU3oA2gWR0CUG9J+DvmYdX2UKGgGaAloD0MIJJpAEQsoY0CUhpRSlGgVTegDaBZHQJQdEppeu3d1fZQoaAZoCWgPQwhFuTR+4ZdlQJSGlFKUaBVN6ANoFkdAlCOA2MsH0XV9lChoBmgJaA9DCM/ZAkLr50xAlIaUUpRoFUvqaBZHQJQmn8HfMwF1fZQoaAZoCWgPQwhXBtUGJw9kQJSGlFKUaBVN6ANoFkdAlCx6oIfKZHV9lChoBmgJaA9DCE8DBkkfBWZAlIaUUpRoFU3oA2gWR0CULO2QGOdYdX2UKGgGaAloD0MI9wFIbWKPbECUhpRSlGgVTf0CaBZHQJQt3fzjFQ51fZQoaAZoCWgPQwhpkIKnkBZgQJSGlFKUaBVN6ANoFkdAlDceii7Ci3V9lChoBmgJaA9DCJoF2h3SeWNAlIaUUpRoFU3oA2gWR0CUOPqfOD8MdX2UKGgGaAloD0MIIT1FDhEkYkCUhpRSlGgVTegDaBZHQJQ/LNC7btZ1fZQoaAZoCWgPQwgYBcHjW1JjQJSGlFKUaBVN6ANoFkdAlEux1Tzd13V9lChoBmgJaA9DCJmByvh3H2dAlIaUUpRoFU3oA2gWR0CUYHgydnTRdX2UKGgGaAloD0MIqRd8mpMhZ0CUhpRSlGgVTegDaBZHQJRg6l+EytV1fZQoaAZoCWgPQwgHmPkOfklhQJSGlFKUaBVN6ANoFkdAlGLO27Wd3HV9lChoBmgJaA9DCJBN8iP+ZGFAlIaUUpRoFU3oA2gWR0CUak9/z8P4dX2UKGgGaAloD0MIngd3Z+1cX0CUhpRSlGgVTegDaBZHQJRq2q94/u91fZQoaAZoCWgPQwjtvI3NjjdkQJSGlFKUaBVN6ANoFkdAlGzFkxyn1nV9lChoBmgJaA9DCMu+K4J/S2RAlIaUUpRoFU3oA2gWR0CUbsVtXPqtdX2UKGgGaAloD0MIyR6hZkjGZkCUhpRSlGgVTegDaBZHQJR5M00m+kB1fZQoaAZoCWgPQwiHa7WHPSFhQJSGlFKUaBVN6ANoFkdAlH0nCGetjnV9lChoBmgJaA9DCEdUqG4uq2JAlIaUUpRoFU3oA2gWR0CUg1T4cm0FdX2UKGgGaAloD0MIJqYLsfpYZECUhpRSlGgVTegDaBZHQJSDz5CWu5l1fZQoaAZoCWgPQwiILqhvmTxnQJSGlFKUaBVN6ANoFkdAlIS7zK9wm3V9lChoBmgJaA9DCPTeGAKANmJAlIaUUpRoFU3oA2gWR0CUjFjMFEApdX2UKGgGaAloD0MIPdaMDPKFZECUhpRSlGgVTegDaBZHQJSN1plBhQZ1fZQoaAZoCWgPQwgmAP+UKm5tQJSGlFKUaBVN3QJoFkdAlJJf4VRDTnV9lChoBmgJaA9DCIOkT6toWGVAlIaUUpRoFU3oA2gWR0CUkrJ1JUYLdX2UKGgGaAloD0MIuHNhpFc8cECUhpRSlGgVTUECaBZHQJSUR0lqrR11fZQoaAZoCWgPQwi6ha5EoKVfQJSGlFKUaBVN6ANoFkdAlJ9MjeKsMnV9lChoBmgJaA9DCPmh0oiZZWVAlIaUUpRoFU3oA2gWR0CUn/xNIsiCdX2UKGgGaAloD0MIMunvpXAHZUCUhpRSlGgVTegDaBZHQJSgeOjqOcV1fZQoaAZoCWgPQwgJG55eqeplQJSGlFKUaBVN6ANoFkdAlMOUuYhManV9lChoBmgJaA9DCMfYCS9ByWFAlIaUUpRoFU3oA2gWR0CUxAHO8kD7dX2UKGgGaAloD0MIfnGpSlt7YkCUhpRSlGgVTegDaBZHQJTFigElme11fZQoaAZoCWgPQwgMkGgCxaZvQJSGlFKUaBVNGAJoFkdAlMYDO1OTJXV9lChoBmgJaA9DCCwrTUrBiWdAlIaUUpRoFU3oA2gWR0CUzmL6k691dX2UKGgGaAloD0MI/5YA/FOeXUCUhpRSlGgVTegDaBZHQJTR1qIrOJN1fZQoaAZoCWgPQwhCmNu9XHtkQJSGlFKUaBVN6ANoFkdAlNfGm1pj+nV9lChoBmgJaA9DCPWc9L5xz2ZAlIaUUpRoFU3oA2gWR0CU2Du9eyAydX2UKGgGaAloD0MIhqqYSj+JZECUhpRSlGgVTegDaBZHQJTZI9wFTvR1fZQoaAZoCWgPQwglXMgjOIpjQJSGlFKUaBVN6ANoFkdAlOMt/8VHnXV9lChoBmgJaA9DCIhp39zfW2ZAlIaUUpRoFU3oA2gWR0CU6UBsyi22dX2UKGgGaAloD0MIYTQr24etZkCUhpRSlGgVTegDaBZHQJTppwsGxD91fZQoaAZoCWgPQwhzhAzkWVRmQJSGlFKUaBVN6ANoFkdAlOusQ7LdN3V9lChoBmgJaA9DCNoaEYyDCGRAlIaUUpRoFU3oA2gWR0CU9nYU34sVdX2UKGgGaAloD0MIkNrEyX2UZUCUhpRSlGgVTegDaBZHQJT3FEnb7CV1fZQoaAZoCWgPQwgGuCBbltRcQJSGlFKUaBVN6ANoFkdAlPeCQcPvrnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aeb6f2c842497af620ff7cd05ea5da66ad3602afcd17d899978d65ac7afb0d3
3
+ size 146621
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f402aade280>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f402aade310>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f402aade3a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f402aade430>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f402aade4c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f402aade550>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f402aade5e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f402aade670>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f402aade700>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f402aade790>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f402aade820>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f402aade8b0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f402aad8900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678122152101171856,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": null,
59
+ "_last_episode_starts": {
60
+ ":type:": "<class 'numpy.ndarray'>",
61
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
62
+ },
63
+ "_last_original_obs": null,
64
+ "_episode_num": 0,
65
+ "use_sde": false,
66
+ "sde_sample_freq": -1,
67
+ "_current_progress_remaining": -0.015808000000000044,
68
+ "ep_info_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9PkoI65EYkCUhpRSlIwBbJRN6AOMAXSUR0CTI7EQGwA3dX2UKGgGaAloD0MIr3srEhPuZkCUhpRSlGgVTegDaBZHQJMk/A31jAl1fZQoaAZoCWgPQwioGVJF8eRfQJSGlFKUaBVN6ANoFkdAkyXdX9zfanV9lChoBmgJaA9DCH0DkxvFWmJAlIaUUpRoFU3oA2gWR0CTK16rvLHNdX2UKGgGaAloD0MIJXoZxXI1ZUCUhpRSlGgVTegDaBZHQJMtdkMCtA91fZQoaAZoCWgPQwjbbKzEPG9jQJSGlFKUaBVN6ANoFkdAkzRc9W6shnV9lChoBmgJaA9DCGHFqdbCQEhAlIaUUpRoFU0dAWgWR0CTNNZ0CA+ZdX2UKGgGaAloD0MIlugss4hmYECUhpRSlGgVTegDaBZHQJM3PsNUfgd1fZQoaAZoCWgPQwg8LxUb8/hjQJSGlFKUaBVN6ANoFkdAkz1PtY0VJ3V9lChoBmgJaA9DCCIZcmw9L2dAlIaUUpRoFU3oA2gWR0CTREJUo8ZDdX2UKGgGaAloD0MI+n3/5kVIYUCUhpRSlGgVTegDaBZHQJNEwQRPGhp1fZQoaAZoCWgPQwhkyRzLu/ZmQJSGlFKUaBVN6ANoFkdAk2tBMSK3u3V9lChoBmgJaA9DCJmesMSDemBAlIaUUpRoFU3oA2gWR0CTa8iLEUCadX2UKGgGaAloD0MI3nU25J+UZUCUhpRSlGgVTegDaBZHQJNsZXeWOZN1fZQoaAZoCWgPQwhO7QxTW/RmQJSGlFKUaBVN6ANoFkdAk23TQJHAh3V9lChoBmgJaA9DCIBG6dI/QmNAlIaUUpRoFU3oA2gWR0CTdOtqHoHLdX2UKGgGaAloD0MI9BWkGYviX0CUhpRSlGgVTegDaBZHQJN2C7jDKo11fZQoaAZoCWgPQwhblq/L8KtiQJSGlFKUaBVN6ANoFkdAk3bHaSLZSXV9lChoBmgJaA9DCB5tHLEWKWZAlIaUUpRoFU3oA2gWR0CTeFYl6Z6VdX2UKGgGaAloD0MIPlsHB3v5XkCUhpRSlGgVTegDaBZHQJOAb4Kx9oh1fZQoaAZoCWgPQwj/sRAdglpkQJSGlFKUaBVN6ANoFkdAk4PAr1/UfHV9lChoBmgJaA9DCAmocAQpimFAlIaUUpRoFU3oA2gWR0CTjqROUMXrdX2UKGgGaAloD0MIl/4lqUwNXkCUhpRSlGgVTegDaBZHQJOPXuAqd6N1fZQoaAZoCWgPQwgtX5fhv+JmQJSGlFKUaBVN6ANoFkdAk5I8OoYNzHV9lChoBmgJaA9DCPGeA8uReWJAlIaUUpRoFU3oA2gWR0CTmD/7SApbdX2UKGgGaAloD0MIIzFBDd8iX0CUhpRSlGgVTegDaBZHQJOejSiM5wR1fZQoaAZoCWgPQwjqk9xhExxoQJSGlFKUaBVN6ANoFkdAk57ZSJj2BnV9lChoBmgJaA9DCCRh304imWBAlIaUUpRoFU3oA2gWR0CTwehxo7FLdX2UKGgGaAloD0MIVVG8yloeY0CUhpRSlGgVTegDaBZHQJPCm5LAYYR1fZQoaAZoCWgPQwhccXFUbhtmQJSGlFKUaBVN6ANoFkdAk8Nuuieum3V9lChoBmgJaA9DCO8a9KW3O2JAlIaUUpRoFU3oA2gWR0CTxW+BH09RdX2UKGgGaAloD0MIx9gJL8GEZkCUhpRSlGgVTegDaBZHQJPNukLx7Rh1fZQoaAZoCWgPQwh55XrbTOxhQJSGlFKUaBVN6ANoFkdAk86+IAOrhnV9lChoBmgJaA9DCGxc/65P12NAlIaUUpRoFU3oA2gWR0CTz2Gj9GZvdX2UKGgGaAloD0MICoZzDTNBZ0CUhpRSlGgVTegDaBZHQJPQtrcj7hx1fZQoaAZoCWgPQwiPccXFUV1hQJSGlFKUaBVN6ANoFkdAk9dV1jiGWXV9lChoBmgJaA9DCLhAguLHz2JAlIaUUpRoFU3oA2gWR0CT2XN8ma6SdX2UKGgGaAloD0MIaY6s/LJqY0CUhpRSlGgVTegDaBZHQJPfz05EMLF1fZQoaAZoCWgPQwgvFLAdjPpjQJSGlFKUaBVN6ANoFkdAk+A7or4FinV9lChoBmgJaA9DCGoV/aEZ92BAlIaUUpRoFU3oA2gWR0CT4mJng5zYdX2UKGgGaAloD0MIXvbrTvciYUCUhpRSlGgVTegDaBZHQJPnq4axX4l1fZQoaAZoCWgPQwisPIGwUxxJQJSGlFKUaBVNJwFoFkdAk+j3rD63zHV9lChoBmgJaA9DCOT2yycr7XBAlIaUUpRoFU3CAmgWR0CT6jGd7OVxdX2UKGgGaAloD0MIfv/mxYkIY0CUhpRSlGgVTegDaBZHQJPtHYVZcLV1fZQoaAZoCWgPQwhHxmrz/z9lQJSGlFKUaBVN6ANoFkdAk+1YcFQl8nV9lChoBmgJaA9DCCGtMeiELHFAlIaUUpRoFU16AWgWR0CT9o67dznzdX2UKGgGaAloD0MI0eejjLgQJ0CUhpRSlGgVTQkBaBZHQJQRMsXizcB1fZQoaAZoCWgPQwjS/3It2shiQJSGlFKUaBVN6ANoFkdAlBHCd4FA3XV9lChoBmgJaA9DCJzCSgWVXmRAlIaUUpRoFU3oA2gWR0CUEikwN9YwdX2UKGgGaAloD0MIPQ0YJH35YUCUhpRSlGgVTegDaBZHQJQT2rksBhh1fZQoaAZoCWgPQwgSa/EpAMllQJSGlFKUaBVN6ANoFkdAlBopLIxQBXV9lChoBmgJaA9DCPJ7m/7scUBAlIaUUpRoFUvfaBZHQJQaiKQ7tAt1fZQoaAZoCWgPQwh2jZYDPUdjQJSGlFKUaBVN6ANoFkdAlBsvL5h0AHV9lChoBmgJaA9DCOpdvB83QGNAlIaUUpRoFU3oA2gWR0CUG9J+DvmYdX2UKGgGaAloD0MIJJpAEQsoY0CUhpRSlGgVTegDaBZHQJQdEppeu3d1fZQoaAZoCWgPQwhFuTR+4ZdlQJSGlFKUaBVN6ANoFkdAlCOA2MsH0XV9lChoBmgJaA9DCM/ZAkLr50xAlIaUUpRoFUvqaBZHQJQmn8HfMwF1fZQoaAZoCWgPQwhXBtUGJw9kQJSGlFKUaBVN6ANoFkdAlCx6oIfKZHV9lChoBmgJaA9DCE8DBkkfBWZAlIaUUpRoFU3oA2gWR0CULO2QGOdYdX2UKGgGaAloD0MI9wFIbWKPbECUhpRSlGgVTf0CaBZHQJQt3fzjFQ51fZQoaAZoCWgPQwhpkIKnkBZgQJSGlFKUaBVN6ANoFkdAlDceii7Ci3V9lChoBmgJaA9DCJoF2h3SeWNAlIaUUpRoFU3oA2gWR0CUOPqfOD8MdX2UKGgGaAloD0MIIT1FDhEkYkCUhpRSlGgVTegDaBZHQJQ/LNC7btZ1fZQoaAZoCWgPQwgYBcHjW1JjQJSGlFKUaBVN6ANoFkdAlEux1Tzd13V9lChoBmgJaA9DCJmByvh3H2dAlIaUUpRoFU3oA2gWR0CUYHgydnTRdX2UKGgGaAloD0MIqRd8mpMhZ0CUhpRSlGgVTegDaBZHQJRg6l+EytV1fZQoaAZoCWgPQwgHmPkOfklhQJSGlFKUaBVN6ANoFkdAlGLO27Wd3HV9lChoBmgJaA9DCJBN8iP+ZGFAlIaUUpRoFU3oA2gWR0CUak9/z8P4dX2UKGgGaAloD0MIngd3Z+1cX0CUhpRSlGgVTegDaBZHQJRq2q94/u91fZQoaAZoCWgPQwjtvI3NjjdkQJSGlFKUaBVN6ANoFkdAlGzFkxyn1nV9lChoBmgJaA9DCMu+K4J/S2RAlIaUUpRoFU3oA2gWR0CUbsVtXPqtdX2UKGgGaAloD0MIyR6hZkjGZkCUhpRSlGgVTegDaBZHQJR5M00m+kB1fZQoaAZoCWgPQwiHa7WHPSFhQJSGlFKUaBVN6ANoFkdAlH0nCGetjnV9lChoBmgJaA9DCEdUqG4uq2JAlIaUUpRoFU3oA2gWR0CUg1T4cm0FdX2UKGgGaAloD0MIJqYLsfpYZECUhpRSlGgVTegDaBZHQJSDz5CWu5l1fZQoaAZoCWgPQwiILqhvmTxnQJSGlFKUaBVN6ANoFkdAlIS7zK9wm3V9lChoBmgJaA9DCPTeGAKANmJAlIaUUpRoFU3oA2gWR0CUjFjMFEApdX2UKGgGaAloD0MIPdaMDPKFZECUhpRSlGgVTegDaBZHQJSN1plBhQZ1fZQoaAZoCWgPQwgmAP+UKm5tQJSGlFKUaBVN3QJoFkdAlJJf4VRDTnV9lChoBmgJaA9DCIOkT6toWGVAlIaUUpRoFU3oA2gWR0CUkrJ1JUYLdX2UKGgGaAloD0MIuHNhpFc8cECUhpRSlGgVTUECaBZHQJSUR0lqrR11fZQoaAZoCWgPQwi6ha5EoKVfQJSGlFKUaBVN6ANoFkdAlJ9MjeKsMnV9lChoBmgJaA9DCPmh0oiZZWVAlIaUUpRoFU3oA2gWR0CUn/xNIsiCdX2UKGgGaAloD0MIMunvpXAHZUCUhpRSlGgVTegDaBZHQJSgeOjqOcV1fZQoaAZoCWgPQwgJG55eqeplQJSGlFKUaBVN6ANoFkdAlMOUuYhManV9lChoBmgJaA9DCMfYCS9ByWFAlIaUUpRoFU3oA2gWR0CUxAHO8kD7dX2UKGgGaAloD0MIfnGpSlt7YkCUhpRSlGgVTegDaBZHQJTFigElme11fZQoaAZoCWgPQwgMkGgCxaZvQJSGlFKUaBVNGAJoFkdAlMYDO1OTJXV9lChoBmgJaA9DCCwrTUrBiWdAlIaUUpRoFU3oA2gWR0CUzmL6k691dX2UKGgGaAloD0MI/5YA/FOeXUCUhpRSlGgVTegDaBZHQJTR1qIrOJN1fZQoaAZoCWgPQwhCmNu9XHtkQJSGlFKUaBVN6ANoFkdAlNfGm1pj+nV9lChoBmgJaA9DCPWc9L5xz2ZAlIaUUpRoFU3oA2gWR0CU2Du9eyAydX2UKGgGaAloD0MIhqqYSj+JZECUhpRSlGgVTegDaBZHQJTZI9wFTvR1fZQoaAZoCWgPQwglXMgjOIpjQJSGlFKUaBVN6ANoFkdAlOMt/8VHnXV9lChoBmgJaA9DCIhp39zfW2ZAlIaUUpRoFU3oA2gWR0CU6UBsyi22dX2UKGgGaAloD0MIYTQr24etZkCUhpRSlGgVTegDaBZHQJTppwsGxD91fZQoaAZoCWgPQwhzhAzkWVRmQJSGlFKUaBVN6ANoFkdAlOusQ7LdN3V9lChoBmgJaA9DCNoaEYyDCGRAlIaUUpRoFU3oA2gWR0CU9nYU34sVdX2UKGgGaAloD0MIkNrEyX2UZUCUhpRSlGgVTegDaBZHQJT3FEnb7CV1fZQoaAZoCWgPQwgGuCBbltRcQJSGlFKUaBVN6ANoFkdAlPeCQcPvrnVlLg=="
71
+ },
72
+ "ep_success_buffer": {
73
+ ":type:": "<class 'collections.deque'>",
74
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
+ },
76
+ "_n_updates": 248,
77
+ "n_steps": 1024,
78
+ "gamma": 0.999,
79
+ "gae_lambda": 0.98,
80
+ "ent_coef": 0.01,
81
+ "vf_coef": 0.5,
82
+ "max_grad_norm": 0.5,
83
+ "batch_size": 64,
84
+ "n_epochs": 4,
85
+ "clip_range": {
86
+ ":type:": "<class 'function'>",
87
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
88
+ },
89
+ "clip_range_vf": null,
90
+ "normalize_advantage": true,
91
+ "target_kl": null
92
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42ed2d95e1dccce22374ac178cdf1ab4c034010a9a5377560fb94fb1c35b154e
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27be6789a5c8db1bf3eb5bbc413647c99cd8dfa32dbcfdc5bb675601c821006e
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (208 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.4011350958291, "std_reward": 16.252956518407345, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T17:48:23.494369"}