shrikant11
commited on
Commit
•
76af0c3
1
Parent(s):
52a5c48
checkpoint-10
Browse files- pipeline.py +33 -0
pipeline.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import DiffusionPipeline
|
3 |
+
|
4 |
+
|
5 |
+
class MyPipeline(DiffusionPipeline):
|
6 |
+
def __init__(self, unet, scheduler):
|
7 |
+
super().__init__()
|
8 |
+
|
9 |
+
self.register_modules(unet=unet, scheduler=scheduler)
|
10 |
+
|
11 |
+
@torch.no_grad()
|
12 |
+
def __call__(self, batch_size: int = 1, num_inference_steps: int = 50):
|
13 |
+
# Sample gaussian noise to begin loop
|
14 |
+
image = torch.randn((batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size))
|
15 |
+
|
16 |
+
image = image.to(self.device)
|
17 |
+
|
18 |
+
# set step values
|
19 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
20 |
+
|
21 |
+
for t in self.progress_bar(self.scheduler.timesteps):
|
22 |
+
# 1. predict noise model_output
|
23 |
+
model_output = self.unet(image, t).sample
|
24 |
+
|
25 |
+
# 2. predict previous mean of image x_t-1 and add variance depending on eta
|
26 |
+
# eta corresponds to η in paper and should be between [0, 1]
|
27 |
+
# do x_t -> x_t-1
|
28 |
+
image = self.scheduler.step(model_output, t, image, eta).prev_sample
|
29 |
+
|
30 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
31 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
32 |
+
|
33 |
+
return image
|