import torch from diffusers import DiffusionPipeline class MyPipeline(DiffusionPipeline): def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__(self, batch_size: int = 1, num_inference_steps: int = 50): # Sample gaussian noise to begin loop image = torch.randn((batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size)) image = image.to(self.device) # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output model_output = self.unet(image, t).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 image = self.scheduler.step(model_output, t, image, eta).prev_sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() return image