File size: 5,070 Bytes
f8c77a1
 
a22ec7b
 
 
 
 
f8c77a1
 
0b96bac
f8c77a1
 
 
 
 
0b96bac
f8c77a1
0b96bac
 
 
 
 
 
 
f8c77a1
0b96bac
f8c77a1
 
 
0b96bac
f8c77a1
0b96bac
f8c77a1
 
 
 
 
0b96bac
f8c77a1
 
0b96bac
f8c77a1
0b96bac
f8c77a1
 
 
0b96bac
f8c77a1
 
 
0b96bac
f8c77a1
 
 
0b96bac
 
e6f9389
0b96bac
f8c77a1
 
 
 
 
 
 
 
 
0b96bac
f8c77a1
 
 
 
 
0b96bac
f8c77a1
0b96bac
f8c77a1
 
0b96bac
f8c77a1
 
 
0b96bac
f8c77a1
 
 
e6f9389
f8c77a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b96bac
f8c77a1
0b96bac
f8c77a1
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
library_name: transformers
tags:
- story generation
- AI creativity
- NLP
- prompt-based storytelling
---

# Model Card for LoomAI

## Model Details

### Model Description

LoomAI is a fine-tuned 🤗 transformers model designed to generate stories or the beginning of a story based on a user-provided prompt. This model is a key component of the Loomina project, enabling users to interact with AI to kickstart their creative writing process.

- **Developed by:** Shrujan
- **Funded by:** Self-funded
- **Shared by:** Shrujan
- **Model type:** Transformer-based language model
- **Language(s) (NLP):** English
<!-- - **License:** [More Information Needed] -->
- **Finetuned from model:** LLAMA2

<!-- ### Model Sources [optional]

<!-- Provide the basic links for the model. -->

<!-- - **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]  -->

## Uses

### Direct Use

LoomAI is specifically designed to generate story introductions or full stories based on prompts provided by users. It is ideal for writers seeking inspiration or anyone looking to explore creative storytelling.


### Downstream Use 

LoomAI can be further fine-tuned for specific genres or styles of storytelling, or integrated into applications that assist in creative writing.

### Out-of-Scope Use

The model is not intended for factual content generation or use cases requiring high accuracy in information. It should not be used for generating harmful, misleading, or inappropriate content.

## Bias, Risks, and Limitations

The model may generate biased or inappropriate content, as it relies on data that could include such biases. Users should carefully review outputs, especially in sensitive contexts.

### Recommendations

- Implement content filters to manage the generation of inappropriate material.
- Encourage user supervision to ensure content aligns with intended use.

<!-- ## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

The model was fine-tuned on a dataset curated for storytelling, including a variety of story beginnings, plots, and narrative styles to enhance its ability to generate engaging story introductions.

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

<!-- #### Preprocessing [optional]

[More Information Needed] -->


<!-- #### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

<!-- #### Speeds, Sizes, Times [optional]  -->

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

<!-- [More Information Needed]  -->

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors

Shrujan

## Model Card Contact

[More Information Needed]