File size: 6,797 Bytes
51aa909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "d5e3e67f",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tkinter import *\n",
    "import pickle\n",
    "import numpy as np\n",
    "from sklearn.feature_extraction.text import CountVectorizer\n",
    "from tensorflow.keras.models import Model\n",
    "from tensorflow.keras import models\n",
    "from tensorflow.keras.layers import Input,LSTM,Dense\n",
    "\n",
    "cv=CountVectorizer(binary=True,tokenizer=lambda txt: txt.split(),stop_words=None,analyzer='char') \n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "40c50a8d",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "7e54fc77",
   "metadata": {},
   "outputs": [],
   "source": [
    "datafile = pickle.load(open(\"training_data_translation.pkl\",\"rb\"))\n",
    "input_characters = datafile['input_characters']\n",
    "target_characters = datafile['target_characters']\n",
    "max_input_length = datafile['max_input_length']\n",
    "max_target_length = datafile['max_target_length']\n",
    "num_en_chars = datafile['num_en_chars']\n",
    "num_dec_chars = datafile['num_dec_chars']\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "ec54e3fc",
   "metadata": {},
   "outputs": [],
   "source": [
    "#Inference model\n",
    "#load the model\n",
    "model = models.load_model(\"model_translation\")\n",
    "#construct encoder model from the output of second layer\n",
    "#discard the encoder output and store only states.\n",
    "enc_outputs, state_h_enc, state_c_enc = model.layers[2].output \n",
    "#add input object and state from the layer.\n",
    "en_model = Model(model.input[0], [state_h_enc, state_c_enc])\n",
    "#create Input object for hidden and cell state for decoder\n",
    "#shape of layer with hidden or latent dimension\n",
    "dec_state_input_h = Input(shape=(256,))\n",
    "dec_state_input_c = Input(shape=(256,))\n",
    "dec_states_inputs = [dec_state_input_h, dec_state_input_c]\n",
    "#add input from the encoder output and initialize with states.\n",
    "dec_lstm = model.layers[3]\n",
    "dec_outputs, state_h_dec, state_c_dec = dec_lstm(\n",
    "    model.input[1], initial_state=dec_states_inputs\n",
    ")\n",
    "dec_states = [state_h_dec, state_c_dec]\n",
    "dec_dense = model.layers[4]\n",
    "dec_outputs = dec_dense(dec_outputs)\n",
    "#create Model with the input of decoder state input and encoder input\n",
    "#and decoder output with the decoder states.\n",
    "dec_model = Model(\n",
    "    [model.input[1]] + dec_states_inputs, [dec_outputs] + dec_states\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "835bebec",
   "metadata": {},
   "outputs": [],
   "source": [
    "def decode_sequence_translation(input_seq):\n",
    "        #create a dictionary with a key as index and value as characters.\n",
    "        reverse_target_char_index = dict(enumerate(target_characters))\n",
    "        #get the states from the user input sequence\n",
    "        states_value = en_model.predict(input_seq)\n",
    "\n",
    "        #fit target characters and \n",
    "        #initialize every first character to be 1 which is '\\t'.\n",
    "        #Generate empty target sequence of length 1.\n",
    "        co=cv.fit(target_characters) \n",
    "        target_seq=np.array([co.transform(list(\"\\t\")).toarray().tolist()],dtype=\"float32\")\n",
    "\n",
    "        #if the iteration reaches the end of text than it will be stop the it\n",
    "        stop_condition = False\n",
    "        #append every predicted character in decoded sentence\n",
    "        decoded_sentence = \"\"\n",
    "\n",
    "        while not stop_condition:\n",
    "            #get predicted output and discard hidden and cell state.\n",
    "            output_chars, h, c = dec_model.predict([target_seq] + states_value)\n",
    "\n",
    "            #get the index and from the dictionary get the character.\n",
    "            char_index = np.argmax(output_chars[0, -1, :])\n",
    "            text_char = reverse_target_char_index[char_index]\n",
    "            decoded_sentence += text_char\n",
    "                # Exit condition: either hit max length\n",
    "            # or find a stop character.\n",
    "            if text_char == \"\\n\" or len(decoded_sentence) > max_target_length:\n",
    "                stop_condition = True\n",
    "            #update target sequence to the current character index.\n",
    "            target_seq = np.zeros((1, 1, num_dec_chars))\n",
    "            target_seq[0, 0, char_index] = 1.0\n",
    "            states_value = [h, c]\n",
    "        #return the decoded sentence\n",
    "        return decoded_sentence\n",
    "\n",
    "    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "911511bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def bagofcharacter_translation(input_t):\n",
    "        cv=CountVectorizer(binary=True,tokenizer=lambda txt:\n",
    "        txt.split(),stop_words=None,analyzer='char') \n",
    "        en_in_data=[] ; pad_en=[1]+[0]*(len(input_characters)-1)\n",
    "    \n",
    "        cv_inp= cv.fit(input_characters)\n",
    "        en_in_data.append(cv_inp.transform(list(input_t)).toarray().tolist())\n",
    "    \n",
    "        if len(input_t)< max_input_length:\n",
    "          for _ in range(max_input_length-len(input_t)):\n",
    "            en_in_data[0].append(pad_en)\n",
    "    \n",
    "        return np.array(en_in_data,dtype=\"float32\")\n",
    "    \n",
    " \n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2732c86d",
   "metadata": {},
   "outputs": [],
   "source": [
    "output_texts=[]\n",
    "sent=  input( ) \n",
    "input_text = sent.split(' ') \n",
    "output_texts=\"\"\n",
    "\n",
    "en_in_data = bagofcharacter_translation( x.lower()+\".\")    \n",
    "x=decode_sequence_translation(en_in_data)\n",
    "output_texts+=\" \"+ x  \n",
    "print(output_texts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7bc57d99",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}