File size: 6,797 Bytes
51aa909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 17,
"id": "d5e3e67f",
"metadata": {},
"outputs": [],
"source": [
"from tkinter import *\n",
"import pickle\n",
"import numpy as np\n",
"from sklearn.feature_extraction.text import CountVectorizer\n",
"from tensorflow.keras.models import Model\n",
"from tensorflow.keras import models\n",
"from tensorflow.keras.layers import Input,LSTM,Dense\n",
"\n",
"cv=CountVectorizer(binary=True,tokenizer=lambda txt: txt.split(),stop_words=None,analyzer='char') \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "40c50a8d",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 18,
"id": "7e54fc77",
"metadata": {},
"outputs": [],
"source": [
"datafile = pickle.load(open(\"training_data_translation.pkl\",\"rb\"))\n",
"input_characters = datafile['input_characters']\n",
"target_characters = datafile['target_characters']\n",
"max_input_length = datafile['max_input_length']\n",
"max_target_length = datafile['max_target_length']\n",
"num_en_chars = datafile['num_en_chars']\n",
"num_dec_chars = datafile['num_dec_chars']\n"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "ec54e3fc",
"metadata": {},
"outputs": [],
"source": [
"#Inference model\n",
"#load the model\n",
"model = models.load_model(\"model_translation\")\n",
"#construct encoder model from the output of second layer\n",
"#discard the encoder output and store only states.\n",
"enc_outputs, state_h_enc, state_c_enc = model.layers[2].output \n",
"#add input object and state from the layer.\n",
"en_model = Model(model.input[0], [state_h_enc, state_c_enc])\n",
"#create Input object for hidden and cell state for decoder\n",
"#shape of layer with hidden or latent dimension\n",
"dec_state_input_h = Input(shape=(256,))\n",
"dec_state_input_c = Input(shape=(256,))\n",
"dec_states_inputs = [dec_state_input_h, dec_state_input_c]\n",
"#add input from the encoder output and initialize with states.\n",
"dec_lstm = model.layers[3]\n",
"dec_outputs, state_h_dec, state_c_dec = dec_lstm(\n",
" model.input[1], initial_state=dec_states_inputs\n",
")\n",
"dec_states = [state_h_dec, state_c_dec]\n",
"dec_dense = model.layers[4]\n",
"dec_outputs = dec_dense(dec_outputs)\n",
"#create Model with the input of decoder state input and encoder input\n",
"#and decoder output with the decoder states.\n",
"dec_model = Model(\n",
" [model.input[1]] + dec_states_inputs, [dec_outputs] + dec_states\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "835bebec",
"metadata": {},
"outputs": [],
"source": [
"def decode_sequence_translation(input_seq):\n",
" #create a dictionary with a key as index and value as characters.\n",
" reverse_target_char_index = dict(enumerate(target_characters))\n",
" #get the states from the user input sequence\n",
" states_value = en_model.predict(input_seq)\n",
"\n",
" #fit target characters and \n",
" #initialize every first character to be 1 which is '\\t'.\n",
" #Generate empty target sequence of length 1.\n",
" co=cv.fit(target_characters) \n",
" target_seq=np.array([co.transform(list(\"\\t\")).toarray().tolist()],dtype=\"float32\")\n",
"\n",
" #if the iteration reaches the end of text than it will be stop the it\n",
" stop_condition = False\n",
" #append every predicted character in decoded sentence\n",
" decoded_sentence = \"\"\n",
"\n",
" while not stop_condition:\n",
" #get predicted output and discard hidden and cell state.\n",
" output_chars, h, c = dec_model.predict([target_seq] + states_value)\n",
"\n",
" #get the index and from the dictionary get the character.\n",
" char_index = np.argmax(output_chars[0, -1, :])\n",
" text_char = reverse_target_char_index[char_index]\n",
" decoded_sentence += text_char\n",
" # Exit condition: either hit max length\n",
" # or find a stop character.\n",
" if text_char == \"\\n\" or len(decoded_sentence) > max_target_length:\n",
" stop_condition = True\n",
" #update target sequence to the current character index.\n",
" target_seq = np.zeros((1, 1, num_dec_chars))\n",
" target_seq[0, 0, char_index] = 1.0\n",
" states_value = [h, c]\n",
" #return the decoded sentence\n",
" return decoded_sentence\n",
"\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "911511bb",
"metadata": {},
"outputs": [],
"source": [
"\n",
"def bagofcharacter_translation(input_t):\n",
" cv=CountVectorizer(binary=True,tokenizer=lambda txt:\n",
" txt.split(),stop_words=None,analyzer='char') \n",
" en_in_data=[] ; pad_en=[1]+[0]*(len(input_characters)-1)\n",
" \n",
" cv_inp= cv.fit(input_characters)\n",
" en_in_data.append(cv_inp.transform(list(input_t)).toarray().tolist())\n",
" \n",
" if len(input_t)< max_input_length:\n",
" for _ in range(max_input_length-len(input_t)):\n",
" en_in_data[0].append(pad_en)\n",
" \n",
" return np.array(en_in_data,dtype=\"float32\")\n",
" \n",
" \n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2732c86d",
"metadata": {},
"outputs": [],
"source": [
"output_texts=[]\n",
"sent= input( ) \n",
"input_text = sent.split(' ') \n",
"output_texts=\"\"\n",
"\n",
"en_in_data = bagofcharacter_translation( x.lower()+\".\") \n",
"x=decode_sequence_translation(en_in_data)\n",
"output_texts+=\" \"+ x \n",
"print(output_texts)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7bc57d99",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|