shubh7 commited on
Commit
5b33e43
·
verified ·
1 Parent(s): 0e5bbf5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ # Model Card Metadata
3
+ license: apache-2.0
4
+ library_name: statsmodels
5
+ tags:
6
+ - time-series
7
+ - forecasting
8
+ - ARIMA
9
+ - financial-data
10
+ datasets:
11
+ - bitcoin-historical-data
12
+ model_name: ARIMA Bitcoin Forecasting Model
13
+ ---
14
+
15
+ # Model Card for ARIMA Bitcoin Forecasting Model
16
+
17
+ This ARIMA model is designed to predict Bitcoin market trends using historical data. It is trained on the closing prices of Bitcoin, extracted from the Bitcoin Historical Dataset. The model aims to provide accurate short-term forecasts for cryptocurrency price movements.
18
+
19
+ ## Model Details
20
+
21
+ ### Model Description
22
+
23
+ - **Developed by:** [Your Name or Organization]
24
+ - **Funded by:** [Optional: Funding Source]
25
+ - **Shared by:** [Your Name or Organization]
26
+ - **Model type:** ARIMA (AutoRegressive Integrated Moving Average)
27
+ - **Language(s):** Not applicable
28
+ - **License:** Apache 2.0
29
+ - **Finetuned from model:** Not applicable
30
+
31
+ ### Model Sources
32
+
33
+ - **Repository:** [Add your Hugging Face repo URL]
34
+ - **Dataset:** [Bitcoin Historical Data on Kaggle](https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data)
35
+ - **Demo:** [Optional: Add demo link if available]
36
+
37
+ ## Uses
38
+
39
+ ### Direct Use
40
+
41
+ This model can be used directly to forecast future Bitcoin prices based on historical price data. Suitable for applications like:
42
+ - Cryptocurrency trend analysis
43
+ - Financial planning tools
44
+ - Educational purposes in time-series forecasting
45
+
46
+ ### Downstream Use
47
+
48
+ The model can be fine-tuned or integrated into larger financial forecasting systems to improve predictions for related datasets.
49
+
50
+ ### Out-of-Scope Use
51
+
52
+ - Not designed for long-term forecasting due to potential error accumulation.
53
+ - Not suitable for non-financial time-series data without retraining.