a2c-PandaReachDense-v2 / config.json
shubhamagarwal92's picture
Initial commit
a5eade9
raw
history blame
15.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7a6ec80a7760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a6ec80a9640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691380968246898240, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASRHhPp6iQbx44BA/SRHhPp6iQbx44BA/SRHhPp6iQbx44BA/SRHhPp6iQbx44BA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAgRjLvSAWLz81S6I+fIjFPwawFT8M/cq+2VRhP4H+g7+ll2K/pSSmPylQxz5Gu2S/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABJEeE+nqJBvHjgED8rtoi76CoTuixAl7tJEeE+nqJBvHjgED8rtoi76CoTuixAl7tJEeE+nqJBvHjgED8rtoi76CoTuixAl7tJEeE+nqJBvHjgED8rtoi76CoTuixAl7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.439585 -0.01181856 0.5659251 ]\n [ 0.439585 -0.01181856 0.5659251 ]\n [ 0.439585 -0.01181856 0.5659251 ]\n [ 0.439585 -0.01181856 0.5659251 ]]", "desired_goal": "[[-0.09916783 0.68393135 0.31698003]\n [ 1.5432277 0.58471715 -0.39646184]\n [ 0.8802009 -1.0312043 -0.8851264 ]\n [ 1.2979933 0.38928345 -0.89348257]]", "observation": "[[ 4.3958500e-01 -1.1818556e-02 5.6592512e-01 -4.1721067e-03\n -5.6139985e-04 -4.6158042e-03]\n [ 4.3958500e-01 -1.1818556e-02 5.6592512e-01 -4.1721067e-03\n -5.6139985e-04 -4.6158042e-03]\n [ 4.3958500e-01 -1.1818556e-02 5.6592512e-01 -4.1721067e-03\n -5.6139985e-04 -4.6158042e-03]\n [ 4.3958500e-01 -1.1818556e-02 5.6592512e-01 -4.1721067e-03\n -5.6139985e-04 -4.6158042e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAuRJ0PTyUxL3ua18+yaWfvUpFXj1/sso9UDyUvQ0IDj0zvoQ+1tFqPVlknD0GGDQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05958817 -0.09598586 0.21818516]\n [-0.07795293 0.0542653 0.09897327]\n [-0.07238066 0.03467565 0.2592636 ]\n [ 0.05732902 0.07636327 0.17587289]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILsiW5euy87+UhpRSlIwBbJRLMowBdJRHQKXt8F/QSjB1fZQoaAZoCWgPQwjGM2jon2D7v5SGlFKUaBVLMmgWR0Cl7a2eHzpYdX2UKGgGaAloD0MIuHh4z4El97+UhpRSlGgVSzJoFkdApe1rleWv83V9lChoBmgJaA9DCCTTodPzbvq/lIaUUpRoFUsyaBZHQKXtJF0gbId1fZQoaAZoCWgPQwhgr7DgfkD7v5SGlFKUaBVLMmgWR0Cl7uidSVGDdX2UKGgGaAloD0MIK4VALnFk9b+UhpRSlGgVSzJoFkdApe6l0/4ZdnV9lChoBmgJaA9DCHhEherm4vu/lIaUUpRoFUsyaBZHQKXuZDJEH+t1fZQoaAZoCWgPQwgK2uTwSSf+v5SGlFKUaBVLMmgWR0Cl7h1qFh5PdX2UKGgGaAloD0MIxhhYx/GD/7+UhpRSlGgVSzJoFkdApe/58UmD2HV9lChoBmgJaA9DCHgLJCh+DADAlIaUUpRoFUsyaBZHQKXvtxrBTGZ1fZQoaAZoCWgPQwinBS/6ClL7v5SGlFKUaBVLMmgWR0Cl73V5a/yodX2UKGgGaAloD0MIPrK5ap7j/L+UhpRSlGgVSzJoFkdApe8upXIU8HV9lChoBmgJaA9DCJSilXuBuQDAlIaUUpRoFUsyaBZHQKXw/QTmGM51fZQoaAZoCWgPQwj/5sWJr3b9v5SGlFKUaBVLMmgWR0Cl8Lp6IFeOdX2UKGgGaAloD0MI7KLogY/BAcCUhpRSlGgVSzJoFkdApfB4qqfe13V9lChoBmgJaA9DCPoI/OHnPwHAlIaUUpRoFUsyaBZHQKXwMb6xgRd1fZQoaAZoCWgPQwhtyaoIN7kDwJSGlFKUaBVLMmgWR0Cl8fu1WsBAdX2UKGgGaAloD0MIcv27PnMWAMCUhpRSlGgVSzJoFkdApfG42CNCJHV9lChoBmgJaA9DCAbWcfxQKfu/lIaUUpRoFUsyaBZHQKXxd0bLlmx1fZQoaAZoCWgPQwimKm1xjY8BwJSGlFKUaBVLMmgWR0Cl8TBVuJk5dX2UKGgGaAloD0MI1VqYhXZO/r+UhpRSlGgVSzJoFkdApfMOn2qT83V9lChoBmgJaA9DCAltOZfiqv2/lIaUUpRoFUsyaBZHQKXyy8BdUsF1fZQoaAZoCWgPQwgm32xzY3r+v5SGlFKUaBVLMmgWR0Cl8oofr8iwdX2UKGgGaAloD0MINPeQ8L0fAMCUhpRSlGgVSzJoFkdApfJDN4Z/C3V9lChoBmgJaA9DCM3NN6J7Fvq/lIaUUpRoFUsyaBZHQKX0DQO4G2V1fZQoaAZoCWgPQwgUQgddwmH4v5SGlFKUaBVLMmgWR0Cl88oYWLxadX2UKGgGaAloD0MINWCQ9GkV/7+UhpRSlGgVSzJoFkdApfOINb1RL3V9lChoBmgJaA9DCGHij6LOnPW/lIaUUpRoFUsyaBZHQKXzQSIP9UF1fZQoaAZoCWgPQwim8naE08L6v5SGlFKUaBVLMmgWR0Cl9QRIz3yqdX2UKGgGaAloD0MIEhWqm4v/9b+UhpRSlGgVSzJoFkdApfTBYmsvI3V9lChoBmgJaA9DCAywj05dufe/lIaUUpRoFUsyaBZHQKX0f3C9AX51fZQoaAZoCWgPQwixUkFF1e/+v5SGlFKUaBVLMmgWR0Cl9Dguh9LIdX2UKGgGaAloD0MIIk+Srpm8/7+UhpRSlGgVSzJoFkdApfX60D2alXV9lChoBmgJaA9DCHx+GCE8Gvy/lIaUUpRoFUsyaBZHQKX1t9Nvfj11fZQoaAZoCWgPQwjlRSbg1wj/v5SGlFKUaBVLMmgWR0Cl9XXWFvhqdX2UKGgGaAloD0MI/mDguffw/L+UhpRSlGgVSzJoFkdApfUuhmGucXV9lChoBmgJaA9DCDigpSvYhvm/lIaUUpRoFUsyaBZHQKX27tNzr/t1fZQoaAZoCWgPQwgqNuZ1xGH4v5SGlFKUaBVLMmgWR0Cl9qvNu+AVdX2UKGgGaAloD0MIL75ojxeS+7+UhpRSlGgVSzJoFkdApfZp8c+7lXV9lChoBmgJaA9DCN7mjZPCfP2/lIaUUpRoFUsyaBZHQKX2JEqlP8B1fZQoaAZoCWgPQwg5YcJoVnb9v5SGlFKUaBVLMmgWR0Cl9+u7QLNOdX2UKGgGaAloD0MIlEp4Qq//87+UhpRSlGgVSzJoFkdApfeos5GSZHV9lChoBmgJaA9DCNY4m44AbgHAlIaUUpRoFUsyaBZHQKX3ZsvZh8Z1fZQoaAZoCWgPQwjXogVoWw0BwJSGlFKUaBVLMmgWR0Cl9x+mFajfdX2UKGgGaAloD0MIsTVbecl/+b+UhpRSlGgVSzJoFkdApfjkyvcJt3V9lChoBmgJaA9DCMDMd/ATh/i/lIaUUpRoFUsyaBZHQKX4ofp2U0N1fZQoaAZoCWgPQwjc2VcepIcAwJSGlFKUaBVLMmgWR0Cl+GAlWwNcdX2UKGgGaAloD0MIiuQrgZSY9r+UhpRSlGgVSzJoFkdApfgZdKNADHV9lChoBmgJaA9DCH506spn+fi/lIaUUpRoFUsyaBZHQKX58QEpy6t1fZQoaAZoCWgPQwh01NFxNXL/v5SGlFKUaBVLMmgWR0Cl+a4zabnYdX2UKGgGaAloD0MIOBH92vqpAMCUhpRSlGgVSzJoFkdApflsgW8AaXV9lChoBmgJaA9DCKLw2To4mP2/lIaUUpRoFUsyaBZHQKX5JYFqzqt1fZQoaAZoCWgPQwhR3Vz8bU/3v5SGlFKUaBVLMmgWR0Cl+vh42S+ydX2UKGgGaAloD0MI1JtR81Wy+L+UhpRSlGgVSzJoFkdApfq1rftQbnV9lChoBmgJaA9DCD9z1qccU/m/lIaUUpRoFUsyaBZHQKX6c7eVLSN1fZQoaAZoCWgPQwghrTHohBD9v5SGlFKUaBVLMmgWR0Cl+iz3AVO9dX2UKGgGaAloD0MINbQB2IAI+L+UhpRSlGgVSzJoFkdApfv8ofCAMHV9lChoBmgJaA9DCHhgAOFDifq/lIaUUpRoFUsyaBZHQKX7uattALR1fZQoaAZoCWgPQwgDRMGMKRj7v5SGlFKUaBVLMmgWR0Cl+3fsu3+ddX2UKGgGaAloD0MIY1+y8WBL+L+UhpRSlGgVSzJoFkdApfswraufVnV9lChoBmgJaA9DCHJsPUM45va/lIaUUpRoFUsyaBZHQKX89haTwDx1fZQoaAZoCWgPQwgYC0Pk9HX3v5SGlFKUaBVLMmgWR0Cl/LNB4UvgdX2UKGgGaAloD0MIOfHVjuKc/b+UhpRSlGgVSzJoFkdApfxxlJ6IFnV9lChoBmgJaA9DCHU8ZqAyvvi/lIaUUpRoFUsyaBZHQKX8KqNIbwV1fZQoaAZoCWgPQwgqVDcXf1v4v5SGlFKUaBVLMmgWR0Cl/mcuSOindX2UKGgGaAloD0MILEZda+9T+L+UhpRSlGgVSzJoFkdApf4lVT72tnV9lChoBmgJaA9DCGpPyTmxB/a/lIaUUpRoFUsyaBZHQKX95YzSCvp1fZQoaAZoCWgPQwgq4J7nT5v2v5SGlFKUaBVLMmgWR0Cl/Z8clw98dX2UKGgGaAloD0MIbtqM0xAV/L+UhpRSlGgVSzJoFkdApgANo+Ofd3V9lChoBmgJaA9DCCtM32sIDve/lIaUUpRoFUsyaBZHQKX/y+RoysV1fZQoaAZoCWgPQwhbttYXCe36v5SGlFKUaBVLMmgWR0Cl/4ri2lVMdX2UKGgGaAloD0MIuVD51/IK/L+UhpRSlGgVSzJoFkdApf9ExubZvnV9lChoBmgJaA9DCO9v0F59PPK/lIaUUpRoFUsyaBZHQKYBroQnQY11fZQoaAZoCWgPQwiXqUnwhjTsv5SGlFKUaBVLMmgWR0CmAWyeZof0dX2UKGgGaAloD0MISIeHMH4a8L+UhpRSlGgVSzJoFkdApgErfrKNhnV9lChoBmgJaA9DCLcIjPUNTPa/lIaUUpRoFUsyaBZHQKYA5XDFZPl1fZQoaAZoCWgPQwh6VtKKb2jyv5SGlFKUaBVLMmgWR0CmA1cNpdrwdX2UKGgGaAloD0MIY5rpXic19b+UhpRSlGgVSzJoFkdApgMUyWRigHV9lChoBmgJaA9DCED7kSIyLPG/lIaUUpRoFUsyaBZHQKYC06FuejF1fZQoaAZoCWgPQwhQw7ewbrz6v5SGlFKUaBVLMmgWR0CmAo4DTz/ZdX2UKGgGaAloD0MIOx3Iemq1+7+UhpRSlGgVSzJoFkdApgTLXQMQVnV9lChoBmgJaA9DCGLzcW2oWPW/lIaUUpRoFUsyaBZHQKYEiICU5dZ1fZQoaAZoCWgPQwgoQ1VMpV/4v5SGlFKUaBVLMmgWR0CmBEZwfhdddX2UKGgGaAloD0MILJ/leXD39b+UhpRSlGgVSzJoFkdApgP/Pomoi3V9lChoBmgJaA9DCN5YUBiUafK/lIaUUpRoFUsyaBZHQKYF2JjUd7x1fZQoaAZoCWgPQwiNJEG4Asrzv5SGlFKUaBVLMmgWR0CmBZYGlhw3dX2UKGgGaAloD0MIEmkbf6Iy+L+UhpRSlGgVSzJoFkdApgVUTrVvuXV9lChoBmgJaA9DCIYCtoMRu/i/lIaUUpRoFUsyaBZHQKYFDUVBUrF1fZQoaAZoCWgPQwjvqZz2lBz1v5SGlFKUaBVLMmgWR0CmBs4HoouxdX2UKGgGaAloD0MISL99HThn97+UhpRSlGgVSzJoFkdApgaLtkWhy3V9lChoBmgJaA9DCMxjzcggd/m/lIaUUpRoFUsyaBZHQKYGShxo7FN1fZQoaAZoCWgPQwjM64hDNlD4v5SGlFKUaBVLMmgWR0CmBgNBfKISdX2UKGgGaAloD0MIHNMTlniA+L+UhpRSlGgVSzJoFkdApgfPq9oN/nV9lChoBmgJaA9DCD+Ne/MbJva/lIaUUpRoFUsyaBZHQKYHjOhTOxB1fZQoaAZoCWgPQwjNr+YAwdz0v5SGlFKUaBVLMmgWR0CmB0reqJdjdX2UKGgGaAloD0MIHooCfSJP9b+UhpRSlGgVSzJoFkdApgcDl5nlGXV9lChoBmgJaA9DCBkD6zh+KOm/lIaUUpRoFUsyaBZHQKYI1TWoWHl1fZQoaAZoCWgPQwgZNzXQfM7wv5SGlFKUaBVLMmgWR0CmCJIg/1QJdX2UKGgGaAloD0MI7uh/uRZt9b+UhpRSlGgVSzJoFkdApghQW3z+WHV9lChoBmgJaA9DCOgSDr3Fg/W/lIaUUpRoFUsyaBZHQKYICRwqAjJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}