Upload folder using huggingface_hub
Browse files- README.md +202 -3
- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- additional_config.json +1 -0
- args.json +356 -0
- global_step185/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step185/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +1714 -0
- training_args.bin +3 -0
- zero_to_fp32.py +760 -0
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: llava-hf/LLaVA-NeXT-Video-7B-hf
|
3 |
+
library_name: peft
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.14.0
|
adapter_config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "/home/tzz/.cache/modelscope/hub/models/swift/LLaVA-NeXT-Video-7B-hf",
|
5 |
+
"bias": "none",
|
6 |
+
"eva_config": null,
|
7 |
+
"exclude_modules": null,
|
8 |
+
"fan_in_fan_out": false,
|
9 |
+
"inference_mode": true,
|
10 |
+
"init_lora_weights": true,
|
11 |
+
"layer_replication": null,
|
12 |
+
"layers_pattern": null,
|
13 |
+
"layers_to_transform": null,
|
14 |
+
"loftq_config": {},
|
15 |
+
"lora_alpha": 256,
|
16 |
+
"lora_bias": false,
|
17 |
+
"lora_dropout": 0.05,
|
18 |
+
"megatron_config": null,
|
19 |
+
"megatron_core": "megatron.core",
|
20 |
+
"modules_to_save": [],
|
21 |
+
"peft_type": "LORA",
|
22 |
+
"r": 128,
|
23 |
+
"rank_pattern": {},
|
24 |
+
"revision": null,
|
25 |
+
"target_modules": "(?!^(multi_modal_projector))^(language_model)(?!.*(lora_A|lora_B|base_layer|emb|wte|shared|lm_head|output|score|v_head|classifier)).*",
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
"use_dora": false,
|
28 |
+
"use_rslora": false
|
29 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4402f2f8e389e6ae59c09a456ea4678952568fbff790eaba43ff1c6be7a97825
|
3 |
+
size 639699488
|
additional_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
|
args.json
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model": "swift/LLaVA-NeXT-Video-7B-hf",
|
3 |
+
"model_type": "llava_next_video_hf",
|
4 |
+
"model_revision": null,
|
5 |
+
"task_type": "causal_lm",
|
6 |
+
"torch_dtype": "bfloat16",
|
7 |
+
"attn_impl": null,
|
8 |
+
"num_labels": null,
|
9 |
+
"rope_scaling": null,
|
10 |
+
"device_map": null,
|
11 |
+
"max_memory": {},
|
12 |
+
"local_repo_path": null,
|
13 |
+
"template": "llava_next_video_hf",
|
14 |
+
"system": null,
|
15 |
+
"max_length": 4096,
|
16 |
+
"truncation_strategy": "delete",
|
17 |
+
"max_pixels": null,
|
18 |
+
"tools_prompt": "react_en",
|
19 |
+
"norm_bbox": null,
|
20 |
+
"padding_side": "right",
|
21 |
+
"loss_scale": "default",
|
22 |
+
"sequence_parallel_size": 1,
|
23 |
+
"use_chat_template": true,
|
24 |
+
"template_backend": "swift",
|
25 |
+
"dataset": [
|
26 |
+
"/data1/tzz/VQA/train_lsvq_swift_3000.json"
|
27 |
+
],
|
28 |
+
"val_dataset": [],
|
29 |
+
"split_dataset_ratio": 0.01,
|
30 |
+
"data_seed": 42,
|
31 |
+
"dataset_num_proc": 1,
|
32 |
+
"streaming": false,
|
33 |
+
"enable_cache": false,
|
34 |
+
"download_mode": "reuse_dataset_if_exists",
|
35 |
+
"columns": {},
|
36 |
+
"strict": false,
|
37 |
+
"remove_unused_columns": true,
|
38 |
+
"model_name": [
|
39 |
+
null,
|
40 |
+
null
|
41 |
+
],
|
42 |
+
"model_author": [
|
43 |
+
null,
|
44 |
+
null
|
45 |
+
],
|
46 |
+
"custom_dataset_info": [],
|
47 |
+
"quant_method": null,
|
48 |
+
"quant_bits": null,
|
49 |
+
"hqq_axis": null,
|
50 |
+
"bnb_4bit_compute_dtype": "bfloat16",
|
51 |
+
"bnb_4bit_quant_type": "nf4",
|
52 |
+
"bnb_4bit_use_double_quant": true,
|
53 |
+
"bnb_4bit_quant_storage": null,
|
54 |
+
"max_new_tokens": 64,
|
55 |
+
"temperature": 0.0,
|
56 |
+
"top_k": null,
|
57 |
+
"top_p": null,
|
58 |
+
"repetition_penalty": null,
|
59 |
+
"num_beams": 1,
|
60 |
+
"stream": false,
|
61 |
+
"stop_words": [],
|
62 |
+
"logprobs": false,
|
63 |
+
"top_logprobs": null,
|
64 |
+
"ckpt_dir": null,
|
65 |
+
"load_dataset_config": null,
|
66 |
+
"lora_modules": [],
|
67 |
+
"tuner_backend": "peft",
|
68 |
+
"train_type": "lora",
|
69 |
+
"adapters": [],
|
70 |
+
"seed": 42,
|
71 |
+
"model_kwargs": {},
|
72 |
+
"load_args": false,
|
73 |
+
"load_data_args": false,
|
74 |
+
"use_hf": false,
|
75 |
+
"hub_token": null,
|
76 |
+
"custom_register_path": [],
|
77 |
+
"ignore_args_error": false,
|
78 |
+
"use_swift_lora": false,
|
79 |
+
"output_dir": "/data1/tzz/VQA/ckpt/llava_next_video/v2-20250226-080739",
|
80 |
+
"overwrite_output_dir": false,
|
81 |
+
"do_train": false,
|
82 |
+
"do_eval": false,
|
83 |
+
"do_predict": false,
|
84 |
+
"eval_strategy": "epoch",
|
85 |
+
"prediction_loss_only": false,
|
86 |
+
"per_device_train_batch_size": 1,
|
87 |
+
"per_device_eval_batch_size": 1,
|
88 |
+
"per_gpu_train_batch_size": null,
|
89 |
+
"per_gpu_eval_batch_size": null,
|
90 |
+
"gradient_accumulation_steps": 16,
|
91 |
+
"eval_accumulation_steps": null,
|
92 |
+
"eval_delay": 0,
|
93 |
+
"torch_empty_cache_steps": null,
|
94 |
+
"learning_rate": 1e-05,
|
95 |
+
"weight_decay": 0.1,
|
96 |
+
"adam_beta1": 0.9,
|
97 |
+
"adam_beta2": 0.999,
|
98 |
+
"adam_epsilon": 1e-08,
|
99 |
+
"max_grad_norm": 1.0,
|
100 |
+
"num_train_epochs": 1.0,
|
101 |
+
"max_steps": -1,
|
102 |
+
"lr_scheduler_type": "cosine",
|
103 |
+
"lr_scheduler_kwargs": null,
|
104 |
+
"warmup_ratio": 0.05,
|
105 |
+
"warmup_steps": 0,
|
106 |
+
"log_level": "passive",
|
107 |
+
"log_level_replica": "warning",
|
108 |
+
"log_on_each_node": true,
|
109 |
+
"logging_dir": "/data1/tzz/VQA/ckpt/llava_next_video/v2-20250226-080739/runs",
|
110 |
+
"logging_strategy": "steps",
|
111 |
+
"logging_first_step": true,
|
112 |
+
"logging_steps": 1,
|
113 |
+
"logging_nan_inf_filter": true,
|
114 |
+
"save_strategy": "epoch",
|
115 |
+
"save_steps": 500,
|
116 |
+
"save_total_limit": 1,
|
117 |
+
"save_safetensors": true,
|
118 |
+
"save_on_each_node": false,
|
119 |
+
"save_only_model": false,
|
120 |
+
"restore_callback_states_from_checkpoint": false,
|
121 |
+
"no_cuda": false,
|
122 |
+
"use_cpu": false,
|
123 |
+
"use_mps_device": false,
|
124 |
+
"jit_mode_eval": false,
|
125 |
+
"use_ipex": false,
|
126 |
+
"bf16": true,
|
127 |
+
"fp16": false,
|
128 |
+
"fp16_opt_level": "O1",
|
129 |
+
"half_precision_backend": "auto",
|
130 |
+
"bf16_full_eval": false,
|
131 |
+
"fp16_full_eval": false,
|
132 |
+
"tf32": null,
|
133 |
+
"local_rank": 0,
|
134 |
+
"ddp_backend": null,
|
135 |
+
"tpu_num_cores": null,
|
136 |
+
"tpu_metrics_debug": false,
|
137 |
+
"debug": null,
|
138 |
+
"dataloader_drop_last": false,
|
139 |
+
"eval_steps": null,
|
140 |
+
"dataloader_num_workers": 4,
|
141 |
+
"dataloader_prefetch_factor": null,
|
142 |
+
"past_index": -1,
|
143 |
+
"run_name": null,
|
144 |
+
"disable_tqdm": null,
|
145 |
+
"label_names": null,
|
146 |
+
"load_best_model_at_end": false,
|
147 |
+
"metric_for_best_model": "loss",
|
148 |
+
"greater_is_better": false,
|
149 |
+
"ignore_data_skip": false,
|
150 |
+
"fsdp": "",
|
151 |
+
"fsdp_min_num_params": 0,
|
152 |
+
"fsdp_config": null,
|
153 |
+
"fsdp_transformer_layer_cls_to_wrap": null,
|
154 |
+
"accelerator_config": {
|
155 |
+
"dispatch_batches": false
|
156 |
+
},
|
157 |
+
"deepspeed": {
|
158 |
+
"fp16": {
|
159 |
+
"enabled": "auto",
|
160 |
+
"loss_scale": 0,
|
161 |
+
"loss_scale_window": 1000,
|
162 |
+
"initial_scale_power": 16,
|
163 |
+
"hysteresis": 2,
|
164 |
+
"min_loss_scale": 1
|
165 |
+
},
|
166 |
+
"bf16": {
|
167 |
+
"enabled": "auto"
|
168 |
+
},
|
169 |
+
"zero_optimization": {
|
170 |
+
"stage": 3,
|
171 |
+
"offload_optimizer": {
|
172 |
+
"device": "none",
|
173 |
+
"pin_memory": true
|
174 |
+
},
|
175 |
+
"offload_param": {
|
176 |
+
"device": "none",
|
177 |
+
"pin_memory": true
|
178 |
+
},
|
179 |
+
"overlap_comm": true,
|
180 |
+
"contiguous_gradients": true,
|
181 |
+
"sub_group_size": 1000000000.0,
|
182 |
+
"reduce_bucket_size": "auto",
|
183 |
+
"stage3_prefetch_bucket_size": "auto",
|
184 |
+
"stage3_param_persistence_threshold": "auto",
|
185 |
+
"stage3_max_live_parameters": 1000000000.0,
|
186 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
187 |
+
"stage3_gather_16bit_weights_on_model_save": true
|
188 |
+
},
|
189 |
+
"gradient_accumulation_steps": "auto",
|
190 |
+
"gradient_clipping": "auto",
|
191 |
+
"steps_per_print": 2000,
|
192 |
+
"train_batch_size": "auto",
|
193 |
+
"train_micro_batch_size_per_gpu": "auto",
|
194 |
+
"wall_clock_breakdown": false
|
195 |
+
},
|
196 |
+
"label_smoothing_factor": 0.0,
|
197 |
+
"optim": "adamw_torch",
|
198 |
+
"optim_args": null,
|
199 |
+
"adafactor": false,
|
200 |
+
"group_by_length": false,
|
201 |
+
"length_column_name": "length",
|
202 |
+
"report_to": [
|
203 |
+
"wandb"
|
204 |
+
],
|
205 |
+
"ddp_find_unused_parameters": null,
|
206 |
+
"ddp_bucket_cap_mb": null,
|
207 |
+
"ddp_broadcast_buffers": null,
|
208 |
+
"dataloader_pin_memory": true,
|
209 |
+
"dataloader_persistent_workers": false,
|
210 |
+
"skip_memory_metrics": true,
|
211 |
+
"use_legacy_prediction_loop": false,
|
212 |
+
"push_to_hub": false,
|
213 |
+
"resume_from_checkpoint": null,
|
214 |
+
"hub_model_id": null,
|
215 |
+
"hub_strategy": "every_save",
|
216 |
+
"hub_private_repo": null,
|
217 |
+
"hub_always_push": false,
|
218 |
+
"gradient_checkpointing": true,
|
219 |
+
"gradient_checkpointing_kwargs": null,
|
220 |
+
"include_inputs_for_metrics": false,
|
221 |
+
"include_for_metrics": [],
|
222 |
+
"eval_do_concat_batches": true,
|
223 |
+
"fp16_backend": "auto",
|
224 |
+
"evaluation_strategy": "epoch",
|
225 |
+
"push_to_hub_model_id": null,
|
226 |
+
"push_to_hub_organization": null,
|
227 |
+
"push_to_hub_token": null,
|
228 |
+
"mp_parameters": "",
|
229 |
+
"auto_find_batch_size": false,
|
230 |
+
"full_determinism": false,
|
231 |
+
"torchdynamo": null,
|
232 |
+
"ray_scope": "last",
|
233 |
+
"ddp_timeout": 1800,
|
234 |
+
"torch_compile": false,
|
235 |
+
"torch_compile_backend": null,
|
236 |
+
"torch_compile_mode": null,
|
237 |
+
"dispatch_batches": null,
|
238 |
+
"split_batches": null,
|
239 |
+
"include_tokens_per_second": false,
|
240 |
+
"include_num_input_tokens_seen": false,
|
241 |
+
"neftune_noise_alpha": null,
|
242 |
+
"optim_target_modules": null,
|
243 |
+
"batch_eval_metrics": false,
|
244 |
+
"eval_on_start": false,
|
245 |
+
"use_liger_kernel": false,
|
246 |
+
"eval_use_gather_object": false,
|
247 |
+
"average_tokens_across_devices": false,
|
248 |
+
"sortish_sampler": false,
|
249 |
+
"predict_with_generate": false,
|
250 |
+
"generation_max_length": null,
|
251 |
+
"generation_num_beams": null,
|
252 |
+
"generation_config": null,
|
253 |
+
"freeze_parameters": [
|
254 |
+
"vision_tower",
|
255 |
+
"multi_modal_projector"
|
256 |
+
],
|
257 |
+
"freeze_parameters_ratio": 0.0,
|
258 |
+
"trainable_parameters": [],
|
259 |
+
"freeze_llm": false,
|
260 |
+
"freeze_vit": true,
|
261 |
+
"freeze_aligner": true,
|
262 |
+
"target_modules": [
|
263 |
+
"all-linear"
|
264 |
+
],
|
265 |
+
"target_regex": null,
|
266 |
+
"modules_to_save": [],
|
267 |
+
"lora_rank": 128,
|
268 |
+
"lora_alpha": 256,
|
269 |
+
"lora_dropout": 0.05,
|
270 |
+
"lora_bias": "none",
|
271 |
+
"lora_dtype": null,
|
272 |
+
"lorap_lr_ratio": null,
|
273 |
+
"use_rslora": false,
|
274 |
+
"use_dora": false,
|
275 |
+
"lora_ga_batch_size": 2,
|
276 |
+
"lora_ga_iters": 2,
|
277 |
+
"lora_ga_max_length": 1024,
|
278 |
+
"lora_ga_direction": "ArB2r",
|
279 |
+
"lora_ga_scale": "stable",
|
280 |
+
"lora_ga_stable_gamma": 16,
|
281 |
+
"init_weights": true,
|
282 |
+
"fourier_n_frequency": 2000,
|
283 |
+
"fourier_scaling": 300.0,
|
284 |
+
"boft_block_size": 4,
|
285 |
+
"boft_block_num": 0,
|
286 |
+
"boft_n_butterfly_factor": 1,
|
287 |
+
"boft_dropout": 0.0,
|
288 |
+
"vera_rank": 256,
|
289 |
+
"vera_projection_prng_key": 0,
|
290 |
+
"vera_dropout": 0.0,
|
291 |
+
"vera_d_initial": 0.1,
|
292 |
+
"adapter_act": "gelu",
|
293 |
+
"adapter_length": 128,
|
294 |
+
"use_galore": false,
|
295 |
+
"galore_target_modules": null,
|
296 |
+
"galore_rank": 128,
|
297 |
+
"galore_update_proj_gap": 50,
|
298 |
+
"galore_scale": 1.0,
|
299 |
+
"galore_proj_type": "std",
|
300 |
+
"galore_optim_per_parameter": false,
|
301 |
+
"galore_with_embedding": false,
|
302 |
+
"galore_quantization": false,
|
303 |
+
"galore_proj_quant": false,
|
304 |
+
"galore_proj_bits": 4,
|
305 |
+
"galore_proj_group_size": 256,
|
306 |
+
"galore_cos_threshold": 0.4,
|
307 |
+
"galore_gamma_proj": 2,
|
308 |
+
"galore_queue_size": 5,
|
309 |
+
"adalora_target_r": 8,
|
310 |
+
"adalora_init_r": 12,
|
311 |
+
"adalora_tinit": 0,
|
312 |
+
"adalora_tfinal": 0,
|
313 |
+
"adalora_deltaT": 1,
|
314 |
+
"adalora_beta1": 0.85,
|
315 |
+
"adalora_beta2": 0.85,
|
316 |
+
"adalora_orth_reg_weight": 0.5,
|
317 |
+
"llamapro_num_new_blocks": 4,
|
318 |
+
"llamapro_num_groups": null,
|
319 |
+
"lisa_activated_layers": 0,
|
320 |
+
"lisa_step_interval": 20,
|
321 |
+
"reft_layer_key": null,
|
322 |
+
"reft_layers": null,
|
323 |
+
"reft_rank": 4,
|
324 |
+
"reft_intervention_type": "LoreftIntervention",
|
325 |
+
"reft_args": null,
|
326 |
+
"use_liger": false,
|
327 |
+
"model_layer_cls_name": null,
|
328 |
+
"metric_warmup_step": 0,
|
329 |
+
"fsdp_num": 1,
|
330 |
+
"acc_steps": 1,
|
331 |
+
"swanlab_token": null,
|
332 |
+
"swanlab_project": null,
|
333 |
+
"swanlab_workspace": null,
|
334 |
+
"swanlab_exp_name": null,
|
335 |
+
"swanlab_mode": "cloud",
|
336 |
+
"add_version": true,
|
337 |
+
"resume_only_model": false,
|
338 |
+
"check_model": true,
|
339 |
+
"create_checkpoint_symlink": false,
|
340 |
+
"packing": false,
|
341 |
+
"lazy_tokenize": true,
|
342 |
+
"external_plugins": [],
|
343 |
+
"loss_type": null,
|
344 |
+
"optimizer": null,
|
345 |
+
"metric": null,
|
346 |
+
"acc_strategy": "token",
|
347 |
+
"rank": 0,
|
348 |
+
"global_world_size": 1,
|
349 |
+
"local_world_size": 1,
|
350 |
+
"model_suffix": "LLaVA-NeXT-Video-7B-hf",
|
351 |
+
"model_info": "ModelInfo(model_type='llava_next_video_hf', model_dir='/home/tzz/.cache/modelscope/hub/models/swift/LLaVA-NeXT-Video-7B-hf', torch_dtype=torch.bfloat16, max_model_len=4096, quant_method=None, quant_bits=None, rope_scaling={'factor': 2.5, 'type': 'linear'}, config=None, task_type='causal_lm', num_labels=None)",
|
352 |
+
"model_meta": "ModelMeta(model_type='llava_next_video_hf', model_groups=[ModelGroup(models=[Model(ms_model_id='swift/LLaVA-NeXT-Video-7B-DPO-hf', hf_model_id='llava-hf/LLaVA-NeXT-Video-7B-DPO-hf', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='swift/LLaVA-NeXT-Video-7B-32K-hf', hf_model_id='llava-hf/LLaVA-NeXT-Video-7B-32K-hf', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='swift/LLaVA-NeXT-Video-7B-hf', hf_model_id='llava-hf/LLaVA-NeXT-Video-7B-hf', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='llava_next_video_hf', get_function=<function get_model_tokenizer_llava_next_video at 0x7f31a2703880>, model_arch='llava_next_video_hf', architectures=['LlavaNextVideoForConditionalGeneration'], additional_saved_files=[], torch_dtype=None, is_multimodal=True, is_reward=False, task_type=None, ignore_patterns=['*.zip', '*.gguf', '*.pth', '*.pt', 'consolidated*', 'onnx/*', '*.safetensors.md', '*.msgpack', '*.onnx', '*.ot', '*.h5', '*.bin', '*.safetensors'], requires=['transformers>=4.42', 'av'], tags=[])",
|
353 |
+
"model_dir": "/home/tzz/.cache/modelscope/hub/models/swift/LLaVA-NeXT-Video-7B-hf",
|
354 |
+
"hub": "<class 'swift.hub.hub.MSHub'>",
|
355 |
+
"training_args": "Seq2SeqTrainingArguments(output_dir='/data1/tzz/VQA/ckpt/llava_next_video/v2-20250226-080739', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.EPOCH: 'epoch'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=1, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=16, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.1, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, max_grad_norm=1.0, num_train_epochs=1.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.05, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/data1/tzz/VQA/ckpt/llava_next_video/v2-20250226-080739/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=1, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.EPOCH: 'epoch'>, save_steps=500, save_total_limit=1, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=False, eval_steps=None, dataloader_num_workers=4, dataloader_prefetch_factor=None, past_index=-1, run_name='/data1/tzz/VQA/ckpt/llava_next_video/v2-20250226-080739', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='loss', greater_is_better=False, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 3, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'offload_param': {'device': 'none', 'pin_memory': True}, 'overlap_comm': True, 'contiguous_gradients': True, 'sub_group_size': 1000000000.0, 'reduce_bucket_size': 'auto', 'stage3_prefetch_bucket_size': 'auto', 'stage3_param_persistence_threshold': 'auto', 'stage3_max_live_parameters': 1000000000.0, 'stage3_max_reuse_distance': 1000000000.0, 'stage3_gather_16bit_weights_on_model_save': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['wandb'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint=None, hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', evaluation_strategy='epoch', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=1800, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, dispatch_batches=None, split_batches=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, sortish_sampler=False, predict_with_generate=False, generation_max_length=None, generation_num_beams=None, generation_config=None, acc_strategy='token', sequence_parallel_size=1, check_model=True, train_sampler_random=True, is_encoder_decoder=False, metric_warmup_step=0, train_dataset_sample=-1, fsdp_num=1, acc_steps=1, train_type='lora', optimizer=None, local_repo_path=None, galore_config=None)"
|
356 |
+
}
|
global_step185/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb142298d09b7266f4b455468c7c704fb3afa56f2afdc8e0e2378594f054e37c
|
3 |
+
size 3837792176
|
global_step185/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:991e9c2223ae1c3d7654420f5be184b06db39d4b78c74586bcda26d94db1c516
|
3 |
+
size 528622
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step185
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14b9c6bfdcac96caec5b34f932265a4ed33bc329eb6a8061c7a515c092f92e52
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3a2e1772b9728f7cdbde917d5843c9d3b3305888987ed6e39b76c36ce92fef7
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,1714 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.12199707,
|
3 |
+
"best_model_checkpoint": "/data1/tzz/VQA/ckpt/llava_next_video/v2-20250226-080739/checkpoint-185",
|
4 |
+
"epoch": 0.9966329966329966,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 185,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0053872053872053875,
|
13 |
+
"grad_norm": 14.159545000064247,
|
14 |
+
"learning_rate": 1.0000000000000002e-06,
|
15 |
+
"loss": 31.90625,
|
16 |
+
"memory(GiB)": 22.53,
|
17 |
+
"step": 1,
|
18 |
+
"train_speed(iter/s)": 0.022985
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"epoch": 0.010774410774410775,
|
22 |
+
"grad_norm": 14.616283963493206,
|
23 |
+
"learning_rate": 2.0000000000000003e-06,
|
24 |
+
"loss": 31.5234375,
|
25 |
+
"memory(GiB)": 22.53,
|
26 |
+
"step": 2,
|
27 |
+
"train_speed(iter/s)": 0.028711
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01616161616161616,
|
31 |
+
"grad_norm": 13.121864716464238,
|
32 |
+
"learning_rate": 3e-06,
|
33 |
+
"loss": 33.6796875,
|
34 |
+
"memory(GiB)": 22.53,
|
35 |
+
"step": 3,
|
36 |
+
"train_speed(iter/s)": 0.031289
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 0.02154882154882155,
|
40 |
+
"grad_norm": 11.258740067609244,
|
41 |
+
"learning_rate": 4.000000000000001e-06,
|
42 |
+
"loss": 31.8203125,
|
43 |
+
"memory(GiB)": 22.53,
|
44 |
+
"step": 4,
|
45 |
+
"train_speed(iter/s)": 0.032739
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.026936026936026935,
|
49 |
+
"grad_norm": 13.170936715126654,
|
50 |
+
"learning_rate": 5e-06,
|
51 |
+
"loss": 29.2109375,
|
52 |
+
"memory(GiB)": 22.55,
|
53 |
+
"step": 5,
|
54 |
+
"train_speed(iter/s)": 0.033213
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"epoch": 0.03232323232323232,
|
58 |
+
"grad_norm": 14.330929445232412,
|
59 |
+
"learning_rate": 6e-06,
|
60 |
+
"loss": 28.078125,
|
61 |
+
"memory(GiB)": 22.55,
|
62 |
+
"step": 6,
|
63 |
+
"train_speed(iter/s)": 0.033152
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.03771043771043771,
|
67 |
+
"grad_norm": 13.548506738998086,
|
68 |
+
"learning_rate": 7e-06,
|
69 |
+
"loss": 27.5078125,
|
70 |
+
"memory(GiB)": 22.55,
|
71 |
+
"step": 7,
|
72 |
+
"train_speed(iter/s)": 0.033486
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.0430976430976431,
|
76 |
+
"grad_norm": 8.666929263748118,
|
77 |
+
"learning_rate": 8.000000000000001e-06,
|
78 |
+
"loss": 24.9609375,
|
79 |
+
"memory(GiB)": 22.56,
|
80 |
+
"step": 8,
|
81 |
+
"train_speed(iter/s)": 0.033686
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.048484848484848485,
|
85 |
+
"grad_norm": 11.066925048714,
|
86 |
+
"learning_rate": 9e-06,
|
87 |
+
"loss": 19.890625,
|
88 |
+
"memory(GiB)": 22.57,
|
89 |
+
"step": 9,
|
90 |
+
"train_speed(iter/s)": 0.0337
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"epoch": 0.05387205387205387,
|
94 |
+
"grad_norm": 8.973276554829988,
|
95 |
+
"learning_rate": 1e-05,
|
96 |
+
"loss": 14.328125,
|
97 |
+
"memory(GiB)": 22.58,
|
98 |
+
"step": 10,
|
99 |
+
"train_speed(iter/s)": 0.03368
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.05925925925925926,
|
103 |
+
"grad_norm": 4.92025256078084,
|
104 |
+
"learning_rate": 9.999194339645292e-06,
|
105 |
+
"loss": 11.275390625,
|
106 |
+
"memory(GiB)": 22.58,
|
107 |
+
"step": 11,
|
108 |
+
"train_speed(iter/s)": 0.033773
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.06464646464646465,
|
112 |
+
"grad_norm": 2.5239985209180706,
|
113 |
+
"learning_rate": 9.996777618216608e-06,
|
114 |
+
"loss": 9.6875,
|
115 |
+
"memory(GiB)": 22.58,
|
116 |
+
"step": 12,
|
117 |
+
"train_speed(iter/s)": 0.034222
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.07003367003367003,
|
121 |
+
"grad_norm": 3.3965201854332046,
|
122 |
+
"learning_rate": 9.992750614536606e-06,
|
123 |
+
"loss": 7.869140625,
|
124 |
+
"memory(GiB)": 22.58,
|
125 |
+
"step": 13,
|
126 |
+
"train_speed(iter/s)": 0.034559
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"epoch": 0.07542087542087542,
|
130 |
+
"grad_norm": 3.83999730322345,
|
131 |
+
"learning_rate": 9.987114626364172e-06,
|
132 |
+
"loss": 7.22265625,
|
133 |
+
"memory(GiB)": 22.58,
|
134 |
+
"step": 14,
|
135 |
+
"train_speed(iter/s)": 0.034521
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.08080808080808081,
|
139 |
+
"grad_norm": 4.824626769554233,
|
140 |
+
"learning_rate": 9.979871469976197e-06,
|
141 |
+
"loss": 7.0576171875,
|
142 |
+
"memory(GiB)": 22.58,
|
143 |
+
"step": 15,
|
144 |
+
"train_speed(iter/s)": 0.03441
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.0861952861952862,
|
148 |
+
"grad_norm": 3.043760096951554,
|
149 |
+
"learning_rate": 9.971023479582258e-06,
|
150 |
+
"loss": 5.4990234375,
|
151 |
+
"memory(GiB)": 22.58,
|
152 |
+
"step": 16,
|
153 |
+
"train_speed(iter/s)": 0.034356
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.09158249158249158,
|
157 |
+
"grad_norm": 1.3971212531371173,
|
158 |
+
"learning_rate": 9.960573506572391e-06,
|
159 |
+
"loss": 4.044921875,
|
160 |
+
"memory(GiB)": 22.58,
|
161 |
+
"step": 17,
|
162 |
+
"train_speed(iter/s)": 0.03432
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 0.09696969696969697,
|
166 |
+
"grad_norm": 1.5367962214559587,
|
167 |
+
"learning_rate": 9.948524918598175e-06,
|
168 |
+
"loss": 3.44189453125,
|
169 |
+
"memory(GiB)": 22.58,
|
170 |
+
"step": 18,
|
171 |
+
"train_speed(iter/s)": 0.034225
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.10235690235690235,
|
175 |
+
"grad_norm": 1.2329087385122603,
|
176 |
+
"learning_rate": 9.934881598487478e-06,
|
177 |
+
"loss": 3.4072265625,
|
178 |
+
"memory(GiB)": 22.58,
|
179 |
+
"step": 19,
|
180 |
+
"train_speed(iter/s)": 0.034123
|
181 |
+
},
|
182 |
+
{
|
183 |
+
"epoch": 0.10774410774410774,
|
184 |
+
"grad_norm": 0.8648810367159049,
|
185 |
+
"learning_rate": 9.91964794299315e-06,
|
186 |
+
"loss": 3.0048828125,
|
187 |
+
"memory(GiB)": 22.58,
|
188 |
+
"step": 20,
|
189 |
+
"train_speed(iter/s)": 0.03406
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.11313131313131314,
|
193 |
+
"grad_norm": 1.1333084548737522,
|
194 |
+
"learning_rate": 9.902828861376101e-06,
|
195 |
+
"loss": 2.973876953125,
|
196 |
+
"memory(GiB)": 22.58,
|
197 |
+
"step": 21,
|
198 |
+
"train_speed(iter/s)": 0.03407
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.11851851851851852,
|
202 |
+
"grad_norm": 1.67328747436259,
|
203 |
+
"learning_rate": 9.884429773823238e-06,
|
204 |
+
"loss": 2.460693359375,
|
205 |
+
"memory(GiB)": 22.58,
|
206 |
+
"step": 22,
|
207 |
+
"train_speed(iter/s)": 0.033985
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.12390572390572391,
|
211 |
+
"grad_norm": 0.8370283899907709,
|
212 |
+
"learning_rate": 9.864456609700726e-06,
|
213 |
+
"loss": 2.162109375,
|
214 |
+
"memory(GiB)": 22.58,
|
215 |
+
"step": 23,
|
216 |
+
"train_speed(iter/s)": 0.033817
|
217 |
+
},
|
218 |
+
{
|
219 |
+
"epoch": 0.1292929292929293,
|
220 |
+
"grad_norm": 0.7984037408374535,
|
221 |
+
"learning_rate": 9.842915805643156e-06,
|
222 |
+
"loss": 2.711669921875,
|
223 |
+
"memory(GiB)": 22.58,
|
224 |
+
"step": 24,
|
225 |
+
"train_speed(iter/s)": 0.033701
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.13468013468013468,
|
229 |
+
"grad_norm": 0.5877571918682093,
|
230 |
+
"learning_rate": 9.819814303479268e-06,
|
231 |
+
"loss": 1.707275390625,
|
232 |
+
"memory(GiB)": 22.58,
|
233 |
+
"step": 25,
|
234 |
+
"train_speed(iter/s)": 0.033872
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.14006734006734006,
|
238 |
+
"grad_norm": 1.4800629465642858,
|
239 |
+
"learning_rate": 9.79515954799483e-06,
|
240 |
+
"loss": 2.813720703125,
|
241 |
+
"memory(GiB)": 22.58,
|
242 |
+
"step": 26,
|
243 |
+
"train_speed(iter/s)": 0.034031
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.14545454545454545,
|
247 |
+
"grad_norm": 2.1222533390916443,
|
248 |
+
"learning_rate": 9.768959484533461e-06,
|
249 |
+
"loss": 3.59912109375,
|
250 |
+
"memory(GiB)": 22.58,
|
251 |
+
"step": 27,
|
252 |
+
"train_speed(iter/s)": 0.034169
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"epoch": 0.15084175084175083,
|
256 |
+
"grad_norm": 0.8369490081884605,
|
257 |
+
"learning_rate": 9.741222556436132e-06,
|
258 |
+
"loss": 1.89404296875,
|
259 |
+
"memory(GiB)": 22.58,
|
260 |
+
"step": 28,
|
261 |
+
"train_speed(iter/s)": 0.034295
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.15622895622895622,
|
265 |
+
"grad_norm": 0.5854633514891076,
|
266 |
+
"learning_rate": 9.711957702320176e-06,
|
267 |
+
"loss": 1.986328125,
|
268 |
+
"memory(GiB)": 22.58,
|
269 |
+
"step": 29,
|
270 |
+
"train_speed(iter/s)": 0.034448
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"epoch": 0.16161616161616163,
|
274 |
+
"grad_norm": 0.35782476089852655,
|
275 |
+
"learning_rate": 9.681174353198687e-06,
|
276 |
+
"loss": 2.087890625,
|
277 |
+
"memory(GiB)": 22.58,
|
278 |
+
"step": 30,
|
279 |
+
"train_speed(iter/s)": 0.034568
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.16700336700336701,
|
283 |
+
"grad_norm": 0.7861618699933016,
|
284 |
+
"learning_rate": 9.648882429441258e-06,
|
285 |
+
"loss": 2.669921875,
|
286 |
+
"memory(GiB)": 22.58,
|
287 |
+
"step": 31,
|
288 |
+
"train_speed(iter/s)": 0.034675
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 0.1723905723905724,
|
292 |
+
"grad_norm": 0.536791680824106,
|
293 |
+
"learning_rate": 9.615092337576987e-06,
|
294 |
+
"loss": 2.203125,
|
295 |
+
"memory(GiB)": 22.58,
|
296 |
+
"step": 32,
|
297 |
+
"train_speed(iter/s)": 0.034758
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.17777777777777778,
|
301 |
+
"grad_norm": 1.3726808261834198,
|
302 |
+
"learning_rate": 9.579814966940833e-06,
|
303 |
+
"loss": 2.114501953125,
|
304 |
+
"memory(GiB)": 22.58,
|
305 |
+
"step": 33,
|
306 |
+
"train_speed(iter/s)": 0.034839
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.18316498316498317,
|
310 |
+
"grad_norm": 0.8535138723050261,
|
311 |
+
"learning_rate": 9.543061686164374e-06,
|
312 |
+
"loss": 2.1591796875,
|
313 |
+
"memory(GiB)": 22.58,
|
314 |
+
"step": 34,
|
315 |
+
"train_speed(iter/s)": 0.034969
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.18855218855218855,
|
319 |
+
"grad_norm": 0.6726334477065563,
|
320 |
+
"learning_rate": 9.504844339512096e-06,
|
321 |
+
"loss": 2.35791015625,
|
322 |
+
"memory(GiB)": 22.58,
|
323 |
+
"step": 35,
|
324 |
+
"train_speed(iter/s)": 0.035076
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.19393939393939394,
|
328 |
+
"grad_norm": 0.7227226956981251,
|
329 |
+
"learning_rate": 9.465175243064428e-06,
|
330 |
+
"loss": 2.400390625,
|
331 |
+
"memory(GiB)": 22.58,
|
332 |
+
"step": 36,
|
333 |
+
"train_speed(iter/s)": 0.035195
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.19932659932659932,
|
337 |
+
"grad_norm": 0.7075241914063357,
|
338 |
+
"learning_rate": 9.424067180748692e-06,
|
339 |
+
"loss": 1.476318359375,
|
340 |
+
"memory(GiB)": 22.58,
|
341 |
+
"step": 37,
|
342 |
+
"train_speed(iter/s)": 0.035278
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.2047138047138047,
|
346 |
+
"grad_norm": 0.8285808812880359,
|
347 |
+
"learning_rate": 9.381533400219319e-06,
|
348 |
+
"loss": 2.50634765625,
|
349 |
+
"memory(GiB)": 22.58,
|
350 |
+
"step": 38,
|
351 |
+
"train_speed(iter/s)": 0.035354
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.2101010101010101,
|
355 |
+
"grad_norm": 0.747109858212397,
|
356 |
+
"learning_rate": 9.337587608588588e-06,
|
357 |
+
"loss": 2.397216796875,
|
358 |
+
"memory(GiB)": 22.58,
|
359 |
+
"step": 39,
|
360 |
+
"train_speed(iter/s)": 0.035434
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.21548821548821548,
|
364 |
+
"grad_norm": 0.8997236382866319,
|
365 |
+
"learning_rate": 9.292243968009332e-06,
|
366 |
+
"loss": 2.3466796875,
|
367 |
+
"memory(GiB)": 22.58,
|
368 |
+
"step": 40,
|
369 |
+
"train_speed(iter/s)": 0.035447
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.22087542087542086,
|
373 |
+
"grad_norm": 0.3854506877674985,
|
374 |
+
"learning_rate": 9.24551709111097e-06,
|
375 |
+
"loss": 1.607421875,
|
376 |
+
"memory(GiB)": 22.58,
|
377 |
+
"step": 41,
|
378 |
+
"train_speed(iter/s)": 0.035398
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 0.22626262626262628,
|
382 |
+
"grad_norm": 0.4259732475000951,
|
383 |
+
"learning_rate": 9.197422036290386e-06,
|
384 |
+
"loss": 1.921630859375,
|
385 |
+
"memory(GiB)": 22.58,
|
386 |
+
"step": 42,
|
387 |
+
"train_speed(iter/s)": 0.035349
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.23164983164983166,
|
391 |
+
"grad_norm": 0.46150408574103824,
|
392 |
+
"learning_rate": 9.147974302859158e-06,
|
393 |
+
"loss": 1.41650390625,
|
394 |
+
"memory(GiB)": 22.58,
|
395 |
+
"step": 43,
|
396 |
+
"train_speed(iter/s)": 0.035321
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"epoch": 0.23703703703703705,
|
400 |
+
"grad_norm": 0.5918291232050616,
|
401 |
+
"learning_rate": 9.09718982604866e-06,
|
402 |
+
"loss": 1.58154296875,
|
403 |
+
"memory(GiB)": 22.58,
|
404 |
+
"step": 44,
|
405 |
+
"train_speed(iter/s)": 0.03529
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.24242424242424243,
|
409 |
+
"grad_norm": 1.1984794966626473,
|
410 |
+
"learning_rate": 9.045084971874738e-06,
|
411 |
+
"loss": 2.67236328125,
|
412 |
+
"memory(GiB)": 22.58,
|
413 |
+
"step": 45,
|
414 |
+
"train_speed(iter/s)": 0.035244
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"epoch": 0.24781144781144782,
|
418 |
+
"grad_norm": 0.7304425352094286,
|
419 |
+
"learning_rate": 8.991676531863507e-06,
|
420 |
+
"loss": 1.993408203125,
|
421 |
+
"memory(GiB)": 22.58,
|
422 |
+
"step": 46,
|
423 |
+
"train_speed(iter/s)": 0.0352
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.2531986531986532,
|
427 |
+
"grad_norm": 0.8247667804924503,
|
428 |
+
"learning_rate": 8.936981717640061e-06,
|
429 |
+
"loss": 2.8740234375,
|
430 |
+
"memory(GiB)": 22.58,
|
431 |
+
"step": 47,
|
432 |
+
"train_speed(iter/s)": 0.035111
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"epoch": 0.2585858585858586,
|
436 |
+
"grad_norm": 1.072788633508109,
|
437 |
+
"learning_rate": 8.881018155381766e-06,
|
438 |
+
"loss": 1.845458984375,
|
439 |
+
"memory(GiB)": 22.58,
|
440 |
+
"step": 48,
|
441 |
+
"train_speed(iter/s)": 0.035139
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.26397306397306397,
|
445 |
+
"grad_norm": 0.6949566674892941,
|
446 |
+
"learning_rate": 8.823803880137993e-06,
|
447 |
+
"loss": 2.345458984375,
|
448 |
+
"memory(GiB)": 22.58,
|
449 |
+
"step": 49,
|
450 |
+
"train_speed(iter/s)": 0.035224
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.26936026936026936,
|
454 |
+
"grad_norm": 0.3214051528089464,
|
455 |
+
"learning_rate": 8.765357330018056e-06,
|
456 |
+
"loss": 1.640869140625,
|
457 |
+
"memory(GiB)": 22.58,
|
458 |
+
"step": 50,
|
459 |
+
"train_speed(iter/s)": 0.035311
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.27474747474747474,
|
463 |
+
"grad_norm": 0.8127331172569063,
|
464 |
+
"learning_rate": 8.705697340249275e-06,
|
465 |
+
"loss": 2.334716796875,
|
466 |
+
"memory(GiB)": 22.58,
|
467 |
+
"step": 51,
|
468 |
+
"train_speed(iter/s)": 0.035368
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"epoch": 0.2801346801346801,
|
472 |
+
"grad_norm": 0.6993353179443554,
|
473 |
+
"learning_rate": 8.644843137107058e-06,
|
474 |
+
"loss": 2.2666015625,
|
475 |
+
"memory(GiB)": 22.58,
|
476 |
+
"step": 52,
|
477 |
+
"train_speed(iter/s)": 0.03541
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.2855218855218855,
|
481 |
+
"grad_norm": 0.7930646229400613,
|
482 |
+
"learning_rate": 8.582814331718961e-06,
|
483 |
+
"loss": 1.73876953125,
|
484 |
+
"memory(GiB)": 22.58,
|
485 |
+
"step": 53,
|
486 |
+
"train_speed(iter/s)": 0.035443
|
487 |
+
},
|
488 |
+
{
|
489 |
+
"epoch": 0.2909090909090909,
|
490 |
+
"grad_norm": 0.47348696234661886,
|
491 |
+
"learning_rate": 8.519630913744726e-06,
|
492 |
+
"loss": 1.8544921875,
|
493 |
+
"memory(GiB)": 22.58,
|
494 |
+
"step": 54,
|
495 |
+
"train_speed(iter/s)": 0.035485
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 0.2962962962962963,
|
499 |
+
"grad_norm": 0.5105789152298116,
|
500 |
+
"learning_rate": 8.455313244934324e-06,
|
501 |
+
"loss": 2.10107421875,
|
502 |
+
"memory(GiB)": 22.58,
|
503 |
+
"step": 55,
|
504 |
+
"train_speed(iter/s)": 0.03552
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 0.30168350168350166,
|
508 |
+
"grad_norm": 0.48874730617457113,
|
509 |
+
"learning_rate": 8.389882052566106e-06,
|
510 |
+
"loss": 2.19189453125,
|
511 |
+
"memory(GiB)": 22.58,
|
512 |
+
"step": 56,
|
513 |
+
"train_speed(iter/s)": 0.035547
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.30707070707070705,
|
517 |
+
"grad_norm": 0.7017590448005361,
|
518 |
+
"learning_rate": 8.32335842276713e-06,
|
519 |
+
"loss": 1.605224609375,
|
520 |
+
"memory(GiB)": 22.58,
|
521 |
+
"step": 57,
|
522 |
+
"train_speed(iter/s)": 0.035484
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 0.31245791245791243,
|
526 |
+
"grad_norm": 0.7736924894631574,
|
527 |
+
"learning_rate": 8.255763793717868e-06,
|
528 |
+
"loss": 2.123779296875,
|
529 |
+
"memory(GiB)": 22.58,
|
530 |
+
"step": 58,
|
531 |
+
"train_speed(iter/s)": 0.035432
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 0.3178451178451178,
|
535 |
+
"grad_norm": 0.6091631207035194,
|
536 |
+
"learning_rate": 8.18711994874345e-06,
|
537 |
+
"loss": 1.8798828125,
|
538 |
+
"memory(GiB)": 22.58,
|
539 |
+
"step": 59,
|
540 |
+
"train_speed(iter/s)": 0.035351
|
541 |
+
},
|
542 |
+
{
|
543 |
+
"epoch": 0.32323232323232326,
|
544 |
+
"grad_norm": 0.6745360872937951,
|
545 |
+
"learning_rate": 8.117449009293668e-06,
|
546 |
+
"loss": 2.36767578125,
|
547 |
+
"memory(GiB)": 22.58,
|
548 |
+
"step": 60,
|
549 |
+
"train_speed(iter/s)": 0.035291
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 0.32861952861952864,
|
553 |
+
"grad_norm": 1.1170607516843722,
|
554 |
+
"learning_rate": 8.046773427814043e-06,
|
555 |
+
"loss": 2.153076171875,
|
556 |
+
"memory(GiB)": 22.58,
|
557 |
+
"step": 61,
|
558 |
+
"train_speed(iter/s)": 0.035255
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"epoch": 0.33400673400673403,
|
562 |
+
"grad_norm": 0.42517306211931166,
|
563 |
+
"learning_rate": 7.975115980510187e-06,
|
564 |
+
"loss": 1.717041015625,
|
565 |
+
"memory(GiB)": 22.58,
|
566 |
+
"step": 62,
|
567 |
+
"train_speed(iter/s)": 0.035224
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 0.3393939393939394,
|
571 |
+
"grad_norm": 0.8043024113222557,
|
572 |
+
"learning_rate": 7.902499760007867e-06,
|
573 |
+
"loss": 1.85888671875,
|
574 |
+
"memory(GiB)": 22.58,
|
575 |
+
"step": 63,
|
576 |
+
"train_speed(iter/s)": 0.035142
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 0.3447811447811448,
|
580 |
+
"grad_norm": 0.9761638945939747,
|
581 |
+
"learning_rate": 7.828948167911073e-06,
|
582 |
+
"loss": 1.906005859375,
|
583 |
+
"memory(GiB)": 22.58,
|
584 |
+
"step": 64,
|
585 |
+
"train_speed(iter/s)": 0.035063
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 0.3501683501683502,
|
589 |
+
"grad_norm": 0.4137734068293326,
|
590 |
+
"learning_rate": 7.754484907260513e-06,
|
591 |
+
"loss": 2.05712890625,
|
592 |
+
"memory(GiB)": 22.58,
|
593 |
+
"step": 65,
|
594 |
+
"train_speed(iter/s)": 0.034992
|
595 |
+
},
|
596 |
+
{
|
597 |
+
"epoch": 0.35555555555555557,
|
598 |
+
"grad_norm": 0.6313489954771672,
|
599 |
+
"learning_rate": 7.679133974894984e-06,
|
600 |
+
"loss": 1.56591796875,
|
601 |
+
"memory(GiB)": 22.58,
|
602 |
+
"step": 66,
|
603 |
+
"train_speed(iter/s)": 0.035062
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.36094276094276095,
|
607 |
+
"grad_norm": 0.7916770866661113,
|
608 |
+
"learning_rate": 7.602919653718044e-06,
|
609 |
+
"loss": 1.32373046875,
|
610 |
+
"memory(GiB)": 22.58,
|
611 |
+
"step": 67,
|
612 |
+
"train_speed(iter/s)": 0.035123
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 0.36632996632996634,
|
616 |
+
"grad_norm": 0.7005145101509135,
|
617 |
+
"learning_rate": 7.5258665048725065e-06,
|
618 |
+
"loss": 1.677490234375,
|
619 |
+
"memory(GiB)": 22.58,
|
620 |
+
"step": 68,
|
621 |
+
"train_speed(iter/s)": 0.035192
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.3717171717171717,
|
625 |
+
"grad_norm": 0.5600472715983401,
|
626 |
+
"learning_rate": 7.447999359825263e-06,
|
627 |
+
"loss": 1.8934326171875,
|
628 |
+
"memory(GiB)": 22.58,
|
629 |
+
"step": 69,
|
630 |
+
"train_speed(iter/s)": 0.035242
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"epoch": 0.3771043771043771,
|
634 |
+
"grad_norm": 0.7799156688047453,
|
635 |
+
"learning_rate": 7.369343312364994e-06,
|
636 |
+
"loss": 1.737060546875,
|
637 |
+
"memory(GiB)": 22.58,
|
638 |
+
"step": 70,
|
639 |
+
"train_speed(iter/s)": 0.035303
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.3824915824915825,
|
643 |
+
"grad_norm": 1.0088361337375438,
|
644 |
+
"learning_rate": 7.289923710515338e-06,
|
645 |
+
"loss": 2.55859375,
|
646 |
+
"memory(GiB)": 22.58,
|
647 |
+
"step": 71,
|
648 |
+
"train_speed(iter/s)": 0.035339
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 0.3878787878787879,
|
652 |
+
"grad_norm": 0.7778606766770365,
|
653 |
+
"learning_rate": 7.2097661483661355e-06,
|
654 |
+
"loss": 2.3927001953125,
|
655 |
+
"memory(GiB)": 22.58,
|
656 |
+
"step": 72,
|
657 |
+
"train_speed(iter/s)": 0.035398
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.39326599326599326,
|
661 |
+
"grad_norm": 0.7503526567701239,
|
662 |
+
"learning_rate": 7.128896457825364e-06,
|
663 |
+
"loss": 2.4095458984375,
|
664 |
+
"memory(GiB)": 22.58,
|
665 |
+
"step": 73,
|
666 |
+
"train_speed(iter/s)": 0.035435
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"epoch": 0.39865319865319865,
|
670 |
+
"grad_norm": 0.9293852718192778,
|
671 |
+
"learning_rate": 7.047340700294454e-06,
|
672 |
+
"loss": 2.0943603515625,
|
673 |
+
"memory(GiB)": 22.58,
|
674 |
+
"step": 74,
|
675 |
+
"train_speed(iter/s)": 0.035473
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.40404040404040403,
|
679 |
+
"grad_norm": 1.2981158494810365,
|
680 |
+
"learning_rate": 6.965125158269619e-06,
|
681 |
+
"loss": 2.36279296875,
|
682 |
+
"memory(GiB)": 22.58,
|
683 |
+
"step": 75,
|
684 |
+
"train_speed(iter/s)": 0.035498
|
685 |
+
},
|
686 |
+
{
|
687 |
+
"epoch": 0.4094276094276094,
|
688 |
+
"grad_norm": 0.5915357318010657,
|
689 |
+
"learning_rate": 6.88227632687196e-06,
|
690 |
+
"loss": 1.13037109375,
|
691 |
+
"memory(GiB)": 22.58,
|
692 |
+
"step": 76,
|
693 |
+
"train_speed(iter/s)": 0.035521
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 0.4148148148148148,
|
697 |
+
"grad_norm": 0.8289109263502568,
|
698 |
+
"learning_rate": 6.798820905309036e-06,
|
699 |
+
"loss": 2.245849609375,
|
700 |
+
"memory(GiB)": 22.58,
|
701 |
+
"step": 77,
|
702 |
+
"train_speed(iter/s)": 0.035549
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 0.4202020202020202,
|
706 |
+
"grad_norm": 0.7332772758108902,
|
707 |
+
"learning_rate": 6.714785788270658e-06,
|
708 |
+
"loss": 1.794189453125,
|
709 |
+
"memory(GiB)": 22.58,
|
710 |
+
"step": 78,
|
711 |
+
"train_speed(iter/s)": 0.035574
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 0.4255892255892256,
|
715 |
+
"grad_norm": 0.8695389561000924,
|
716 |
+
"learning_rate": 6.63019805726171e-06,
|
717 |
+
"loss": 2.107177734375,
|
718 |
+
"memory(GiB)": 22.58,
|
719 |
+
"step": 79,
|
720 |
+
"train_speed(iter/s)": 0.035564
|
721 |
+
},
|
722 |
+
{
|
723 |
+
"epoch": 0.43097643097643096,
|
724 |
+
"grad_norm": 1.0578963540355828,
|
725 |
+
"learning_rate": 6.545084971874738e-06,
|
726 |
+
"loss": 2.2099609375,
|
727 |
+
"memory(GiB)": 22.58,
|
728 |
+
"step": 80,
|
729 |
+
"train_speed(iter/s)": 0.035518
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 0.43636363636363634,
|
733 |
+
"grad_norm": 0.5355473518839581,
|
734 |
+
"learning_rate": 6.459473961005168e-06,
|
735 |
+
"loss": 1.679931640625,
|
736 |
+
"memory(GiB)": 22.58,
|
737 |
+
"step": 81,
|
738 |
+
"train_speed(iter/s)": 0.035449
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"epoch": 0.4417508417508417,
|
742 |
+
"grad_norm": 0.47562295475695077,
|
743 |
+
"learning_rate": 6.373392614011952e-06,
|
744 |
+
"loss": 1.548828125,
|
745 |
+
"memory(GiB)": 22.58,
|
746 |
+
"step": 82,
|
747 |
+
"train_speed(iter/s)": 0.03541
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 0.4471380471380471,
|
751 |
+
"grad_norm": 1.1873250939202482,
|
752 |
+
"learning_rate": 6.286868671826513e-06,
|
753 |
+
"loss": 2.3310546875,
|
754 |
+
"memory(GiB)": 22.58,
|
755 |
+
"step": 83,
|
756 |
+
"train_speed(iter/s)": 0.035383
|
757 |
+
},
|
758 |
+
{
|
759 |
+
"epoch": 0.45252525252525255,
|
760 |
+
"grad_norm": 0.6325848523967413,
|
761 |
+
"learning_rate": 6.19993001801283e-06,
|
762 |
+
"loss": 1.63232421875,
|
763 |
+
"memory(GiB)": 22.58,
|
764 |
+
"step": 84,
|
765 |
+
"train_speed(iter/s)": 0.035357
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 0.45791245791245794,
|
769 |
+
"grad_norm": 0.6180246232374331,
|
770 |
+
"learning_rate": 6.112604669781572e-06,
|
771 |
+
"loss": 2.5283203125,
|
772 |
+
"memory(GiB)": 22.58,
|
773 |
+
"step": 85,
|
774 |
+
"train_speed(iter/s)": 0.035328
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 0.4632996632996633,
|
778 |
+
"grad_norm": 0.9254342636136799,
|
779 |
+
"learning_rate": 6.024920768961153e-06,
|
780 |
+
"loss": 2.09814453125,
|
781 |
+
"memory(GiB)": 22.58,
|
782 |
+
"step": 86,
|
783 |
+
"train_speed(iter/s)": 0.03531
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 0.4686868686868687,
|
787 |
+
"grad_norm": 1.0220943585915119,
|
788 |
+
"learning_rate": 5.936906572928625e-06,
|
789 |
+
"loss": 1.8603515625,
|
790 |
+
"memory(GiB)": 22.58,
|
791 |
+
"step": 87,
|
792 |
+
"train_speed(iter/s)": 0.035243
|
793 |
+
},
|
794 |
+
{
|
795 |
+
"epoch": 0.4740740740740741,
|
796 |
+
"grad_norm": 0.547874150160307,
|
797 |
+
"learning_rate": 5.848590445503345e-06,
|
798 |
+
"loss": 2.2890625,
|
799 |
+
"memory(GiB)": 22.58,
|
800 |
+
"step": 88,
|
801 |
+
"train_speed(iter/s)": 0.03516
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 0.4794612794612795,
|
805 |
+
"grad_norm": 0.7203446700675221,
|
806 |
+
"learning_rate": 5.760000847806337e-06,
|
807 |
+
"loss": 1.68115234375,
|
808 |
+
"memory(GiB)": 22.58,
|
809 |
+
"step": 89,
|
810 |
+
"train_speed(iter/s)": 0.035117
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 0.48484848484848486,
|
814 |
+
"grad_norm": 0.7628245708662847,
|
815 |
+
"learning_rate": 5.671166329088278e-06,
|
816 |
+
"loss": 2.126953125,
|
817 |
+
"memory(GiB)": 22.58,
|
818 |
+
"step": 90,
|
819 |
+
"train_speed(iter/s)": 0.035147
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 0.49023569023569025,
|
823 |
+
"grad_norm": 0.8089999734614459,
|
824 |
+
"learning_rate": 5.582115517529114e-06,
|
825 |
+
"loss": 1.948486328125,
|
826 |
+
"memory(GiB)": 22.58,
|
827 |
+
"step": 91,
|
828 |
+
"train_speed(iter/s)": 0.035179
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"epoch": 0.49562289562289563,
|
832 |
+
"grad_norm": 0.5039876551970663,
|
833 |
+
"learning_rate": 5.4928771110122185e-06,
|
834 |
+
"loss": 1.849853515625,
|
835 |
+
"memory(GiB)": 22.58,
|
836 |
+
"step": 92,
|
837 |
+
"train_speed(iter/s)": 0.035212
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.501010101010101,
|
841 |
+
"grad_norm": 0.9008917409254343,
|
842 |
+
"learning_rate": 5.403479867876087e-06,
|
843 |
+
"loss": 2.642578125,
|
844 |
+
"memory(GiB)": 22.58,
|
845 |
+
"step": 93,
|
846 |
+
"train_speed(iter/s)": 0.035235
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"epoch": 0.5063973063973064,
|
850 |
+
"grad_norm": 1.1384096826151604,
|
851 |
+
"learning_rate": 5.3139525976465675e-06,
|
852 |
+
"loss": 2.49365234375,
|
853 |
+
"memory(GiB)": 22.58,
|
854 |
+
"step": 94,
|
855 |
+
"train_speed(iter/s)": 0.035265
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.5117845117845118,
|
859 |
+
"grad_norm": 0.7491826485818727,
|
860 |
+
"learning_rate": 5.224324151752575e-06,
|
861 |
+
"loss": 1.88037109375,
|
862 |
+
"memory(GiB)": 22.58,
|
863 |
+
"step": 95,
|
864 |
+
"train_speed(iter/s)": 0.035291
|
865 |
+
},
|
866 |
+
{
|
867 |
+
"epoch": 0.5171717171717172,
|
868 |
+
"grad_norm": 0.6169314437426718,
|
869 |
+
"learning_rate": 5.134623414228315e-06,
|
870 |
+
"loss": 1.485595703125,
|
871 |
+
"memory(GiB)": 22.58,
|
872 |
+
"step": 96,
|
873 |
+
"train_speed(iter/s)": 0.035322
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.5225589225589226,
|
877 |
+
"grad_norm": 0.7458411085328407,
|
878 |
+
"learning_rate": 5.04487929240499e-06,
|
879 |
+
"loss": 2.030517578125,
|
880 |
+
"memory(GiB)": 22.58,
|
881 |
+
"step": 97,
|
882 |
+
"train_speed(iter/s)": 0.035358
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 0.5279461279461279,
|
886 |
+
"grad_norm": 0.36969067992245414,
|
887 |
+
"learning_rate": 4.955120707595011e-06,
|
888 |
+
"loss": 1.82421875,
|
889 |
+
"memory(GiB)": 22.58,
|
890 |
+
"step": 98,
|
891 |
+
"train_speed(iter/s)": 0.03539
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 0.5333333333333333,
|
895 |
+
"grad_norm": 0.7184526746731991,
|
896 |
+
"learning_rate": 4.865376585771687e-06,
|
897 |
+
"loss": 2.1650390625,
|
898 |
+
"memory(GiB)": 22.58,
|
899 |
+
"step": 99,
|
900 |
+
"train_speed(iter/s)": 0.035417
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.5387205387205387,
|
904 |
+
"grad_norm": 0.5860047275017632,
|
905 |
+
"learning_rate": 4.775675848247427e-06,
|
906 |
+
"loss": 2.016845703125,
|
907 |
+
"memory(GiB)": 22.58,
|
908 |
+
"step": 100,
|
909 |
+
"train_speed(iter/s)": 0.035451
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 0.5441077441077441,
|
913 |
+
"grad_norm": 0.6740666234718802,
|
914 |
+
"learning_rate": 4.686047402353433e-06,
|
915 |
+
"loss": 1.481689453125,
|
916 |
+
"memory(GiB)": 22.58,
|
917 |
+
"step": 101,
|
918 |
+
"train_speed(iter/s)": 0.035484
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 0.5494949494949495,
|
922 |
+
"grad_norm": 0.5962985498733315,
|
923 |
+
"learning_rate": 4.596520132123915e-06,
|
924 |
+
"loss": 2.225341796875,
|
925 |
+
"memory(GiB)": 22.58,
|
926 |
+
"step": 102,
|
927 |
+
"train_speed(iter/s)": 0.035522
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 0.5548821548821549,
|
931 |
+
"grad_norm": 0.6185754487719404,
|
932 |
+
"learning_rate": 4.507122888987782e-06,
|
933 |
+
"loss": 2.630615234375,
|
934 |
+
"memory(GiB)": 22.58,
|
935 |
+
"step": 103,
|
936 |
+
"train_speed(iter/s)": 0.035566
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.5602693602693603,
|
940 |
+
"grad_norm": 0.8891703200104817,
|
941 |
+
"learning_rate": 4.417884482470887e-06,
|
942 |
+
"loss": 1.98291015625,
|
943 |
+
"memory(GiB)": 22.58,
|
944 |
+
"step": 104,
|
945 |
+
"train_speed(iter/s)": 0.03558
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 0.5656565656565656,
|
949 |
+
"grad_norm": 0.5620520767612842,
|
950 |
+
"learning_rate": 4.3288336709117246e-06,
|
951 |
+
"loss": 1.933349609375,
|
952 |
+
"memory(GiB)": 22.58,
|
953 |
+
"step": 105,
|
954 |
+
"train_speed(iter/s)": 0.035549
|
955 |
+
},
|
956 |
+
{
|
957 |
+
"epoch": 0.571043771043771,
|
958 |
+
"grad_norm": 1.3690550098042635,
|
959 |
+
"learning_rate": 4.239999152193664e-06,
|
960 |
+
"loss": 2.217529296875,
|
961 |
+
"memory(GiB)": 22.58,
|
962 |
+
"step": 106,
|
963 |
+
"train_speed(iter/s)": 0.035527
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 0.5764309764309764,
|
967 |
+
"grad_norm": 0.4160377433886458,
|
968 |
+
"learning_rate": 4.1514095544966556e-06,
|
969 |
+
"loss": 1.737060546875,
|
970 |
+
"memory(GiB)": 22.58,
|
971 |
+
"step": 107,
|
972 |
+
"train_speed(iter/s)": 0.03551
|
973 |
+
},
|
974 |
+
{
|
975 |
+
"epoch": 0.5818181818181818,
|
976 |
+
"grad_norm": 0.8209806760015574,
|
977 |
+
"learning_rate": 4.063093427071376e-06,
|
978 |
+
"loss": 2.782470703125,
|
979 |
+
"memory(GiB)": 22.58,
|
980 |
+
"step": 108,
|
981 |
+
"train_speed(iter/s)": 0.035486
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 0.5872053872053872,
|
985 |
+
"grad_norm": 0.726795857048424,
|
986 |
+
"learning_rate": 3.975079231038848e-06,
|
987 |
+
"loss": 2.009521484375,
|
988 |
+
"memory(GiB)": 22.58,
|
989 |
+
"step": 109,
|
990 |
+
"train_speed(iter/s)": 0.035449
|
991 |
+
},
|
992 |
+
{
|
993 |
+
"epoch": 0.5925925925925926,
|
994 |
+
"grad_norm": 1.2624010183388914,
|
995 |
+
"learning_rate": 3.887395330218429e-06,
|
996 |
+
"loss": 2.59814453125,
|
997 |
+
"memory(GiB)": 22.58,
|
998 |
+
"step": 110,
|
999 |
+
"train_speed(iter/s)": 0.035431
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 0.597979797979798,
|
1003 |
+
"grad_norm": 0.7513165711048129,
|
1004 |
+
"learning_rate": 3.8000699819871704e-06,
|
1005 |
+
"loss": 1.6396484375,
|
1006 |
+
"memory(GiB)": 22.58,
|
1007 |
+
"step": 111,
|
1008 |
+
"train_speed(iter/s)": 0.035402
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"epoch": 0.6033670033670033,
|
1012 |
+
"grad_norm": 0.4587115862936887,
|
1013 |
+
"learning_rate": 3.7131313281734895e-06,
|
1014 |
+
"loss": 2.044189453125,
|
1015 |
+
"memory(GiB)": 22.58,
|
1016 |
+
"step": 112,
|
1017 |
+
"train_speed(iter/s)": 0.035373
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 0.6087542087542087,
|
1021 |
+
"grad_norm": 0.41256540620865373,
|
1022 |
+
"learning_rate": 3.62660738598805e-06,
|
1023 |
+
"loss": 1.9287109375,
|
1024 |
+
"memory(GiB)": 22.58,
|
1025 |
+
"step": 113,
|
1026 |
+
"train_speed(iter/s)": 0.03534
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 0.6141414141414141,
|
1030 |
+
"grad_norm": 0.4286929355926436,
|
1031 |
+
"learning_rate": 3.540526038994834e-06,
|
1032 |
+
"loss": 1.646728515625,
|
1033 |
+
"memory(GiB)": 22.58,
|
1034 |
+
"step": 114,
|
1035 |
+
"train_speed(iter/s)": 0.035359
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.6195286195286195,
|
1039 |
+
"grad_norm": 0.8246295061207459,
|
1040 |
+
"learning_rate": 3.4549150281252635e-06,
|
1041 |
+
"loss": 1.7587890625,
|
1042 |
+
"memory(GiB)": 22.58,
|
1043 |
+
"step": 115,
|
1044 |
+
"train_speed(iter/s)": 0.035387
|
1045 |
+
},
|
1046 |
+
{
|
1047 |
+
"epoch": 0.6249158249158249,
|
1048 |
+
"grad_norm": 0.653674454928138,
|
1049 |
+
"learning_rate": 3.3698019427382912e-06,
|
1050 |
+
"loss": 1.9765625,
|
1051 |
+
"memory(GiB)": 22.58,
|
1052 |
+
"step": 116,
|
1053 |
+
"train_speed(iter/s)": 0.035417
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.6303030303030303,
|
1057 |
+
"grad_norm": 0.6402748838297282,
|
1058 |
+
"learning_rate": 3.2852142117293435e-06,
|
1059 |
+
"loss": 1.94970703125,
|
1060 |
+
"memory(GiB)": 22.58,
|
1061 |
+
"step": 117,
|
1062 |
+
"train_speed(iter/s)": 0.035431
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 0.6356902356902356,
|
1066 |
+
"grad_norm": 0.5582058394376362,
|
1067 |
+
"learning_rate": 3.2011790946909673e-06,
|
1068 |
+
"loss": 1.9755859375,
|
1069 |
+
"memory(GiB)": 22.58,
|
1070 |
+
"step": 118,
|
1071 |
+
"train_speed(iter/s)": 0.03546
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.641077441077441,
|
1075 |
+
"grad_norm": 0.8447371297083311,
|
1076 |
+
"learning_rate": 3.11772367312804e-06,
|
1077 |
+
"loss": 1.784423828125,
|
1078 |
+
"memory(GiB)": 22.58,
|
1079 |
+
"step": 119,
|
1080 |
+
"train_speed(iter/s)": 0.035493
|
1081 |
+
},
|
1082 |
+
{
|
1083 |
+
"epoch": 0.6464646464646465,
|
1084 |
+
"grad_norm": 0.7640836687261319,
|
1085 |
+
"learning_rate": 3.0348748417303826e-06,
|
1086 |
+
"loss": 1.76171875,
|
1087 |
+
"memory(GiB)": 22.58,
|
1088 |
+
"step": 120,
|
1089 |
+
"train_speed(iter/s)": 0.035513
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.6518518518518519,
|
1093 |
+
"grad_norm": 0.6689239585125656,
|
1094 |
+
"learning_rate": 2.9526592997055488e-06,
|
1095 |
+
"loss": 2.076904296875,
|
1096 |
+
"memory(GiB)": 22.58,
|
1097 |
+
"step": 121,
|
1098 |
+
"train_speed(iter/s)": 0.03554
|
1099 |
+
},
|
1100 |
+
{
|
1101 |
+
"epoch": 0.6572390572390573,
|
1102 |
+
"grad_norm": 0.8205443169011045,
|
1103 |
+
"learning_rate": 2.871103542174637e-06,
|
1104 |
+
"loss": 2.4423828125,
|
1105 |
+
"memory(GiB)": 22.58,
|
1106 |
+
"step": 122,
|
1107 |
+
"train_speed(iter/s)": 0.035564
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"epoch": 0.6626262626262627,
|
1111 |
+
"grad_norm": 0.3861380215034983,
|
1112 |
+
"learning_rate": 2.790233851633868e-06,
|
1113 |
+
"loss": 1.405517578125,
|
1114 |
+
"memory(GiB)": 22.58,
|
1115 |
+
"step": 123,
|
1116 |
+
"train_speed(iter/s)": 0.035589
|
1117 |
+
},
|
1118 |
+
{
|
1119 |
+
"epoch": 0.6680134680134681,
|
1120 |
+
"grad_norm": 0.9319720706049784,
|
1121 |
+
"learning_rate": 2.7100762894846633e-06,
|
1122 |
+
"loss": 1.884033203125,
|
1123 |
+
"memory(GiB)": 22.58,
|
1124 |
+
"step": 124,
|
1125 |
+
"train_speed(iter/s)": 0.035611
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 0.6734006734006734,
|
1129 |
+
"grad_norm": 0.4894495365923113,
|
1130 |
+
"learning_rate": 2.6306566876350072e-06,
|
1131 |
+
"loss": 1.992431640625,
|
1132 |
+
"memory(GiB)": 22.58,
|
1133 |
+
"step": 125,
|
1134 |
+
"train_speed(iter/s)": 0.035618
|
1135 |
+
},
|
1136 |
+
{
|
1137 |
+
"epoch": 0.6787878787878788,
|
1138 |
+
"grad_norm": 0.5156966779296556,
|
1139 |
+
"learning_rate": 2.55200064017474e-06,
|
1140 |
+
"loss": 1.7987060546875,
|
1141 |
+
"memory(GiB)": 22.58,
|
1142 |
+
"step": 126,
|
1143 |
+
"train_speed(iter/s)": 0.035593
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 0.6841750841750842,
|
1147 |
+
"grad_norm": 0.39627149470201456,
|
1148 |
+
"learning_rate": 2.4741334951274948e-06,
|
1149 |
+
"loss": 1.779541015625,
|
1150 |
+
"memory(GiB)": 22.58,
|
1151 |
+
"step": 127,
|
1152 |
+
"train_speed(iter/s)": 0.035563
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 0.6895622895622896,
|
1156 |
+
"grad_norm": 0.7990132228587018,
|
1157 |
+
"learning_rate": 2.3970803462819586e-06,
|
1158 |
+
"loss": 2.385498046875,
|
1159 |
+
"memory(GiB)": 22.58,
|
1160 |
+
"step": 128,
|
1161 |
+
"train_speed(iter/s)": 0.035533
|
1162 |
+
},
|
1163 |
+
{
|
1164 |
+
"epoch": 0.694949494949495,
|
1165 |
+
"grad_norm": 0.542336867995926,
|
1166 |
+
"learning_rate": 2.320866025105016e-06,
|
1167 |
+
"loss": 1.775390625,
|
1168 |
+
"memory(GiB)": 22.58,
|
1169 |
+
"step": 129,
|
1170 |
+
"train_speed(iter/s)": 0.035487
|
1171 |
+
},
|
1172 |
+
{
|
1173 |
+
"epoch": 0.7003367003367004,
|
1174 |
+
"grad_norm": 0.40553603638944413,
|
1175 |
+
"learning_rate": 2.245515092739488e-06,
|
1176 |
+
"loss": 1.65771484375,
|
1177 |
+
"memory(GiB)": 22.58,
|
1178 |
+
"step": 130,
|
1179 |
+
"train_speed(iter/s)": 0.035457
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 0.7057239057239058,
|
1183 |
+
"grad_norm": 0.5705311307759141,
|
1184 |
+
"learning_rate": 2.171051832088928e-06,
|
1185 |
+
"loss": 1.392578125,
|
1186 |
+
"memory(GiB)": 22.58,
|
1187 |
+
"step": 131,
|
1188 |
+
"train_speed(iter/s)": 0.035439
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 0.7111111111111111,
|
1192 |
+
"grad_norm": 0.5637194621292295,
|
1193 |
+
"learning_rate": 2.097500239992132e-06,
|
1194 |
+
"loss": 1.808349609375,
|
1195 |
+
"memory(GiB)": 22.58,
|
1196 |
+
"step": 132,
|
1197 |
+
"train_speed(iter/s)": 0.035412
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 0.7164983164983165,
|
1201 |
+
"grad_norm": 1.0166298249729564,
|
1202 |
+
"learning_rate": 2.0248840194898155e-06,
|
1203 |
+
"loss": 1.88232421875,
|
1204 |
+
"memory(GiB)": 22.58,
|
1205 |
+
"step": 133,
|
1206 |
+
"train_speed(iter/s)": 0.035367
|
1207 |
+
},
|
1208 |
+
{
|
1209 |
+
"epoch": 0.7218855218855219,
|
1210 |
+
"grad_norm": 0.365517442677317,
|
1211 |
+
"learning_rate": 1.95322657218596e-06,
|
1212 |
+
"loss": 1.8359375,
|
1213 |
+
"memory(GiB)": 22.58,
|
1214 |
+
"step": 134,
|
1215 |
+
"train_speed(iter/s)": 0.035304
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 0.7272727272727273,
|
1219 |
+
"grad_norm": 0.5937921378630181,
|
1220 |
+
"learning_rate": 1.8825509907063328e-06,
|
1221 |
+
"loss": 2.16162109375,
|
1222 |
+
"memory(GiB)": 22.58,
|
1223 |
+
"step": 135,
|
1224 |
+
"train_speed(iter/s)": 0.035244
|
1225 |
+
},
|
1226 |
+
{
|
1227 |
+
"epoch": 0.7326599326599327,
|
1228 |
+
"grad_norm": 0.5630691840328598,
|
1229 |
+
"learning_rate": 1.8128800512565514e-06,
|
1230 |
+
"loss": 1.953369140625,
|
1231 |
+
"memory(GiB)": 22.58,
|
1232 |
+
"step": 136,
|
1233 |
+
"train_speed(iter/s)": 0.035272
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.7380471380471381,
|
1237 |
+
"grad_norm": 0.9036946278139879,
|
1238 |
+
"learning_rate": 1.7442362062821323e-06,
|
1239 |
+
"loss": 3.1923828125,
|
1240 |
+
"memory(GiB)": 22.58,
|
1241 |
+
"step": 137,
|
1242 |
+
"train_speed(iter/s)": 0.035287
|
1243 |
+
},
|
1244 |
+
{
|
1245 |
+
"epoch": 0.7434343434343434,
|
1246 |
+
"grad_norm": 0.5335511498935785,
|
1247 |
+
"learning_rate": 1.6766415772328732e-06,
|
1248 |
+
"loss": 1.705322265625,
|
1249 |
+
"memory(GiB)": 22.58,
|
1250 |
+
"step": 138,
|
1251 |
+
"train_speed(iter/s)": 0.035295
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.7488215488215488,
|
1255 |
+
"grad_norm": 0.8149099249815346,
|
1256 |
+
"learning_rate": 1.610117947433897e-06,
|
1257 |
+
"loss": 2.81689453125,
|
1258 |
+
"memory(GiB)": 22.58,
|
1259 |
+
"step": 139,
|
1260 |
+
"train_speed(iter/s)": 0.035308
|
1261 |
+
},
|
1262 |
+
{
|
1263 |
+
"epoch": 0.7542087542087542,
|
1264 |
+
"grad_norm": 0.5287002241309334,
|
1265 |
+
"learning_rate": 1.544686755065677e-06,
|
1266 |
+
"loss": 1.266357421875,
|
1267 |
+
"memory(GiB)": 22.58,
|
1268 |
+
"step": 140,
|
1269 |
+
"train_speed(iter/s)": 0.035318
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.7595959595959596,
|
1273 |
+
"grad_norm": 0.6139302197140588,
|
1274 |
+
"learning_rate": 1.4803690862552755e-06,
|
1275 |
+
"loss": 1.817626953125,
|
1276 |
+
"memory(GiB)": 22.58,
|
1277 |
+
"step": 141,
|
1278 |
+
"train_speed(iter/s)": 0.035343
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"epoch": 0.764983164983165,
|
1282 |
+
"grad_norm": 0.6333656991964685,
|
1283 |
+
"learning_rate": 1.4171856682810386e-06,
|
1284 |
+
"loss": 2.101806640625,
|
1285 |
+
"memory(GiB)": 22.58,
|
1286 |
+
"step": 142,
|
1287 |
+
"train_speed(iter/s)": 0.035364
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.7703703703703704,
|
1291 |
+
"grad_norm": 0.8829740683592863,
|
1292 |
+
"learning_rate": 1.3551568628929434e-06,
|
1293 |
+
"loss": 2.508056640625,
|
1294 |
+
"memory(GiB)": 22.58,
|
1295 |
+
"step": 143,
|
1296 |
+
"train_speed(iter/s)": 0.03539
|
1297 |
+
},
|
1298 |
+
{
|
1299 |
+
"epoch": 0.7757575757575758,
|
1300 |
+
"grad_norm": 0.5801508492146695,
|
1301 |
+
"learning_rate": 1.2943026597507268e-06,
|
1302 |
+
"loss": 1.6142578125,
|
1303 |
+
"memory(GiB)": 22.58,
|
1304 |
+
"step": 144,
|
1305 |
+
"train_speed(iter/s)": 0.035413
|
1306 |
+
},
|
1307 |
+
{
|
1308 |
+
"epoch": 0.7811447811447811,
|
1309 |
+
"grad_norm": 0.48056036748223746,
|
1310 |
+
"learning_rate": 1.234642669981946e-06,
|
1311 |
+
"loss": 1.942138671875,
|
1312 |
+
"memory(GiB)": 22.58,
|
1313 |
+
"step": 145,
|
1314 |
+
"train_speed(iter/s)": 0.035431
|
1315 |
+
},
|
1316 |
+
{
|
1317 |
+
"epoch": 0.7865319865319865,
|
1318 |
+
"grad_norm": 0.5473637984491948,
|
1319 |
+
"learning_rate": 1.1761961198620081e-06,
|
1320 |
+
"loss": 1.748779296875,
|
1321 |
+
"memory(GiB)": 22.58,
|
1322 |
+
"step": 146,
|
1323 |
+
"train_speed(iter/s)": 0.035455
|
1324 |
+
},
|
1325 |
+
{
|
1326 |
+
"epoch": 0.7919191919191919,
|
1327 |
+
"grad_norm": 0.7226102542834439,
|
1328 |
+
"learning_rate": 1.118981844618236e-06,
|
1329 |
+
"loss": 1.657470703125,
|
1330 |
+
"memory(GiB)": 22.58,
|
1331 |
+
"step": 147,
|
1332 |
+
"train_speed(iter/s)": 0.035472
|
1333 |
+
},
|
1334 |
+
{
|
1335 |
+
"epoch": 0.7973063973063973,
|
1336 |
+
"grad_norm": 0.677002948688539,
|
1337 |
+
"learning_rate": 1.06301828235994e-06,
|
1338 |
+
"loss": 1.730224609375,
|
1339 |
+
"memory(GiB)": 22.58,
|
1340 |
+
"step": 148,
|
1341 |
+
"train_speed(iter/s)": 0.035492
|
1342 |
+
},
|
1343 |
+
{
|
1344 |
+
"epoch": 0.8026936026936027,
|
1345 |
+
"grad_norm": 0.4690206204454014,
|
1346 |
+
"learning_rate": 1.0083234681364934e-06,
|
1347 |
+
"loss": 1.97509765625,
|
1348 |
+
"memory(GiB)": 22.58,
|
1349 |
+
"step": 149,
|
1350 |
+
"train_speed(iter/s)": 0.035513
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 0.8080808080808081,
|
1354 |
+
"grad_norm": 0.38431237166068455,
|
1355 |
+
"learning_rate": 9.549150281252633e-07,
|
1356 |
+
"loss": 1.977783203125,
|
1357 |
+
"memory(GiB)": 22.58,
|
1358 |
+
"step": 150,
|
1359 |
+
"train_speed(iter/s)": 0.035533
|
1360 |
+
},
|
1361 |
+
{
|
1362 |
+
"epoch": 0.8134680134680135,
|
1363 |
+
"grad_norm": 1.4318443328161967,
|
1364 |
+
"learning_rate": 9.028101739513406e-07,
|
1365 |
+
"loss": 2.696533203125,
|
1366 |
+
"memory(GiB)": 22.58,
|
1367 |
+
"step": 151,
|
1368 |
+
"train_speed(iter/s)": 0.035549
|
1369 |
+
},
|
1370 |
+
{
|
1371 |
+
"epoch": 0.8188552188552188,
|
1372 |
+
"grad_norm": 0.39825000243591335,
|
1373 |
+
"learning_rate": 8.520256971408453e-07,
|
1374 |
+
"loss": 1.52294921875,
|
1375 |
+
"memory(GiB)": 22.58,
|
1376 |
+
"step": 152,
|
1377 |
+
"train_speed(iter/s)": 0.035566
|
1378 |
+
},
|
1379 |
+
{
|
1380 |
+
"epoch": 0.8242424242424242,
|
1381 |
+
"grad_norm": 0.403223921534723,
|
1382 |
+
"learning_rate": 8.025779637096138e-07,
|
1383 |
+
"loss": 2.0869140625,
|
1384 |
+
"memory(GiB)": 22.58,
|
1385 |
+
"step": 153,
|
1386 |
+
"train_speed(iter/s)": 0.035581
|
1387 |
+
},
|
1388 |
+
{
|
1389 |
+
"epoch": 0.8296296296296296,
|
1390 |
+
"grad_norm": 0.39408518518211616,
|
1391 |
+
"learning_rate": 7.544829088890326e-07,
|
1392 |
+
"loss": 2.085693359375,
|
1393 |
+
"memory(GiB)": 22.58,
|
1394 |
+
"step": 154,
|
1395 |
+
"train_speed(iter/s)": 0.035601
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 0.835016835016835,
|
1399 |
+
"grad_norm": 0.6580639598152973,
|
1400 |
+
"learning_rate": 7.077560319906696e-07,
|
1401 |
+
"loss": 1.58740234375,
|
1402 |
+
"memory(GiB)": 22.58,
|
1403 |
+
"step": 155,
|
1404 |
+
"train_speed(iter/s)": 0.035601
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 0.8404040404040404,
|
1408 |
+
"grad_norm": 0.5455643216936216,
|
1409 |
+
"learning_rate": 6.624123914114122e-07,
|
1410 |
+
"loss": 1.76953125,
|
1411 |
+
"memory(GiB)": 22.58,
|
1412 |
+
"step": 156,
|
1413 |
+
"train_speed(iter/s)": 0.035584
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 0.8457912457912458,
|
1417 |
+
"grad_norm": 0.9580661740362665,
|
1418 |
+
"learning_rate": 6.184665997806832e-07,
|
1419 |
+
"loss": 2.3505859375,
|
1420 |
+
"memory(GiB)": 22.58,
|
1421 |
+
"step": 157,
|
1422 |
+
"train_speed(iter/s)": 0.035562
|
1423 |
+
},
|
1424 |
+
{
|
1425 |
+
"epoch": 0.8511784511784511,
|
1426 |
+
"grad_norm": 0.49273093322057226,
|
1427 |
+
"learning_rate": 5.759328192513075e-07,
|
1428 |
+
"loss": 1.632080078125,
|
1429 |
+
"memory(GiB)": 22.58,
|
1430 |
+
"step": 158,
|
1431 |
+
"train_speed(iter/s)": 0.035543
|
1432 |
+
},
|
1433 |
+
{
|
1434 |
+
"epoch": 0.8565656565656565,
|
1435 |
+
"grad_norm": 0.5074137587596991,
|
1436 |
+
"learning_rate": 5.348247569355736e-07,
|
1437 |
+
"loss": 1.71240234375,
|
1438 |
+
"memory(GiB)": 22.58,
|
1439 |
+
"step": 159,
|
1440 |
+
"train_speed(iter/s)": 0.03552
|
1441 |
+
},
|
1442 |
+
{
|
1443 |
+
"epoch": 0.8619528619528619,
|
1444 |
+
"grad_norm": 0.7185716029221749,
|
1445 |
+
"learning_rate": 4.951556604879049e-07,
|
1446 |
+
"loss": 2.36669921875,
|
1447 |
+
"memory(GiB)": 22.58,
|
1448 |
+
"step": 160,
|
1449 |
+
"train_speed(iter/s)": 0.035503
|
1450 |
+
},
|
1451 |
+
{
|
1452 |
+
"epoch": 0.8673400673400673,
|
1453 |
+
"grad_norm": 0.7811542866299452,
|
1454 |
+
"learning_rate": 4.569383138356276e-07,
|
1455 |
+
"loss": 1.678955078125,
|
1456 |
+
"memory(GiB)": 22.58,
|
1457 |
+
"step": 161,
|
1458 |
+
"train_speed(iter/s)": 0.035485
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"epoch": 0.8727272727272727,
|
1462 |
+
"grad_norm": 0.5128778192942757,
|
1463 |
+
"learning_rate": 4.201850330591678e-07,
|
1464 |
+
"loss": 2.072998046875,
|
1465 |
+
"memory(GiB)": 22.58,
|
1466 |
+
"step": 162,
|
1467 |
+
"train_speed(iter/s)": 0.035459
|
1468 |
+
},
|
1469 |
+
{
|
1470 |
+
"epoch": 0.8781144781144781,
|
1471 |
+
"grad_norm": 0.6851552480944826,
|
1472 |
+
"learning_rate": 3.8490766242301356e-07,
|
1473 |
+
"loss": 1.55322265625,
|
1474 |
+
"memory(GiB)": 22.58,
|
1475 |
+
"step": 163,
|
1476 |
+
"train_speed(iter/s)": 0.035422
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 0.8835016835016835,
|
1480 |
+
"grad_norm": 1.0656634793505568,
|
1481 |
+
"learning_rate": 3.511175705587433e-07,
|
1482 |
+
"loss": 2.09228515625,
|
1483 |
+
"memory(GiB)": 22.58,
|
1484 |
+
"step": 164,
|
1485 |
+
"train_speed(iter/s)": 0.035412
|
1486 |
+
},
|
1487 |
+
{
|
1488 |
+
"epoch": 0.8888888888888888,
|
1489 |
+
"grad_norm": 0.4704867924767551,
|
1490 |
+
"learning_rate": 3.18825646801314e-07,
|
1491 |
+
"loss": 2.178955078125,
|
1492 |
+
"memory(GiB)": 22.58,
|
1493 |
+
"step": 165,
|
1494 |
+
"train_speed(iter/s)": 0.03542
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 0.8942760942760942,
|
1498 |
+
"grad_norm": 0.3438531193817133,
|
1499 |
+
"learning_rate": 2.8804229767982637e-07,
|
1500 |
+
"loss": 1.828125,
|
1501 |
+
"memory(GiB)": 22.58,
|
1502 |
+
"step": 166,
|
1503 |
+
"train_speed(iter/s)": 0.035441
|
1504 |
+
},
|
1505 |
+
{
|
1506 |
+
"epoch": 0.8996632996632996,
|
1507 |
+
"grad_norm": 0.9072486327466182,
|
1508 |
+
"learning_rate": 2.587774435638679e-07,
|
1509 |
+
"loss": 1.902099609375,
|
1510 |
+
"memory(GiB)": 22.58,
|
1511 |
+
"step": 167,
|
1512 |
+
"train_speed(iter/s)": 0.035458
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 0.9050505050505051,
|
1516 |
+
"grad_norm": 0.40209833194248146,
|
1517 |
+
"learning_rate": 2.3104051546654016e-07,
|
1518 |
+
"loss": 1.72314453125,
|
1519 |
+
"memory(GiB)": 22.58,
|
1520 |
+
"step": 168,
|
1521 |
+
"train_speed(iter/s)": 0.035472
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 0.9104377104377105,
|
1525 |
+
"grad_norm": 0.6534758670706157,
|
1526 |
+
"learning_rate": 2.0484045200517222e-07,
|
1527 |
+
"loss": 1.73095703125,
|
1528 |
+
"memory(GiB)": 22.58,
|
1529 |
+
"step": 169,
|
1530 |
+
"train_speed(iter/s)": 0.03548
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 0.9158249158249159,
|
1534 |
+
"grad_norm": 0.36229213242531244,
|
1535 |
+
"learning_rate": 1.801856965207338e-07,
|
1536 |
+
"loss": 1.954345703125,
|
1537 |
+
"memory(GiB)": 22.58,
|
1538 |
+
"step": 170,
|
1539 |
+
"train_speed(iter/s)": 0.035499
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 0.9212121212121213,
|
1543 |
+
"grad_norm": 0.41462023840060064,
|
1544 |
+
"learning_rate": 1.5708419435684463e-07,
|
1545 |
+
"loss": 1.726318359375,
|
1546 |
+
"memory(GiB)": 22.58,
|
1547 |
+
"step": 171,
|
1548 |
+
"train_speed(iter/s)": 0.035512
|
1549 |
+
},
|
1550 |
+
{
|
1551 |
+
"epoch": 0.9265993265993266,
|
1552 |
+
"grad_norm": 0.793282464162017,
|
1553 |
+
"learning_rate": 1.3554339029927532e-07,
|
1554 |
+
"loss": 2.07861328125,
|
1555 |
+
"memory(GiB)": 22.58,
|
1556 |
+
"step": 172,
|
1557 |
+
"train_speed(iter/s)": 0.035526
|
1558 |
+
},
|
1559 |
+
{
|
1560 |
+
"epoch": 0.931986531986532,
|
1561 |
+
"grad_norm": 0.4924403822397691,
|
1562 |
+
"learning_rate": 1.1557022617676217e-07,
|
1563 |
+
"loss": 1.400634765625,
|
1564 |
+
"memory(GiB)": 22.58,
|
1565 |
+
"step": 173,
|
1566 |
+
"train_speed(iter/s)": 0.035541
|
1567 |
+
},
|
1568 |
+
{
|
1569 |
+
"epoch": 0.9373737373737374,
|
1570 |
+
"grad_norm": 0.41980069690346106,
|
1571 |
+
"learning_rate": 9.717113862389993e-08,
|
1572 |
+
"loss": 2.12158203125,
|
1573 |
+
"memory(GiB)": 22.58,
|
1574 |
+
"step": 174,
|
1575 |
+
"train_speed(iter/s)": 0.03556
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"epoch": 0.9427609427609428,
|
1579 |
+
"grad_norm": 0.8809220146060189,
|
1580 |
+
"learning_rate": 8.035205700685167e-08,
|
1581 |
+
"loss": 2.621826171875,
|
1582 |
+
"memory(GiB)": 22.58,
|
1583 |
+
"step": 175,
|
1584 |
+
"train_speed(iter/s)": 0.035577
|
1585 |
+
},
|
1586 |
+
{
|
1587 |
+
"epoch": 0.9481481481481482,
|
1588 |
+
"grad_norm": 0.6908254679787823,
|
1589 |
+
"learning_rate": 6.511840151252169e-08,
|
1590 |
+
"loss": 1.813232421875,
|
1591 |
+
"memory(GiB)": 22.58,
|
1592 |
+
"step": 176,
|
1593 |
+
"train_speed(iter/s)": 0.035597
|
1594 |
+
},
|
1595 |
+
{
|
1596 |
+
"epoch": 0.9535353535353536,
|
1597 |
+
"grad_norm": 0.49484208186969647,
|
1598 |
+
"learning_rate": 5.1475081401825553e-08,
|
1599 |
+
"loss": 1.9814453125,
|
1600 |
+
"memory(GiB)": 22.58,
|
1601 |
+
"step": 177,
|
1602 |
+
"train_speed(iter/s)": 0.035578
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 0.958922558922559,
|
1606 |
+
"grad_norm": 0.6989450753180266,
|
1607 |
+
"learning_rate": 3.9426493427611177e-08,
|
1608 |
+
"loss": 1.78466796875,
|
1609 |
+
"memory(GiB)": 22.58,
|
1610 |
+
"step": 178,
|
1611 |
+
"train_speed(iter/s)": 0.035563
|
1612 |
+
},
|
1613 |
+
{
|
1614 |
+
"epoch": 0.9643097643097643,
|
1615 |
+
"grad_norm": 0.5543481036485521,
|
1616 |
+
"learning_rate": 2.8976520417742794e-08,
|
1617 |
+
"loss": 1.727783203125,
|
1618 |
+
"memory(GiB)": 22.58,
|
1619 |
+
"step": 179,
|
1620 |
+
"train_speed(iter/s)": 0.035552
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"epoch": 0.9696969696969697,
|
1624 |
+
"grad_norm": 0.5545843045026326,
|
1625 |
+
"learning_rate": 2.012853002380466e-08,
|
1626 |
+
"loss": 1.75634765625,
|
1627 |
+
"memory(GiB)": 22.58,
|
1628 |
+
"step": 180,
|
1629 |
+
"train_speed(iter/s)": 0.035543
|
1630 |
+
},
|
1631 |
+
{
|
1632 |
+
"epoch": 0.9750841750841751,
|
1633 |
+
"grad_norm": 0.3433152184276571,
|
1634 |
+
"learning_rate": 1.2885373635829756e-08,
|
1635 |
+
"loss": 1.64208984375,
|
1636 |
+
"memory(GiB)": 22.58,
|
1637 |
+
"step": 181,
|
1638 |
+
"train_speed(iter/s)": 0.035533
|
1639 |
+
},
|
1640 |
+
{
|
1641 |
+
"epoch": 0.9804713804713805,
|
1642 |
+
"grad_norm": 0.9002229182397717,
|
1643 |
+
"learning_rate": 7.249385463395375e-09,
|
1644 |
+
"loss": 2.177490234375,
|
1645 |
+
"memory(GiB)": 22.58,
|
1646 |
+
"step": 182,
|
1647 |
+
"train_speed(iter/s)": 0.035517
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 0.9858585858585859,
|
1651 |
+
"grad_norm": 0.5840020558119475,
|
1652 |
+
"learning_rate": 3.2223817833931803e-09,
|
1653 |
+
"loss": 1.4775390625,
|
1654 |
+
"memory(GiB)": 22.58,
|
1655 |
+
"step": 183,
|
1656 |
+
"train_speed(iter/s)": 0.035499
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 0.9912457912457913,
|
1660 |
+
"grad_norm": 0.31651969118225726,
|
1661 |
+
"learning_rate": 8.056603547090813e-10,
|
1662 |
+
"loss": 1.804931640625,
|
1663 |
+
"memory(GiB)": 22.58,
|
1664 |
+
"step": 184,
|
1665 |
+
"train_speed(iter/s)": 0.035513
|
1666 |
+
},
|
1667 |
+
{
|
1668 |
+
"epoch": 0.9966329966329966,
|
1669 |
+
"grad_norm": 0.5699524292753597,
|
1670 |
+
"learning_rate": 0.0,
|
1671 |
+
"loss": 1.653076171875,
|
1672 |
+
"memory(GiB)": 22.58,
|
1673 |
+
"step": 185,
|
1674 |
+
"train_speed(iter/s)": 0.035529
|
1675 |
+
},
|
1676 |
+
{
|
1677 |
+
"epoch": 0.9966329966329966,
|
1678 |
+
"eval_loss": 0.12199707329273224,
|
1679 |
+
"eval_runtime": 16.4404,
|
1680 |
+
"eval_samples_per_second": 1.825,
|
1681 |
+
"eval_steps_per_second": 1.825,
|
1682 |
+
"step": 185
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.9966329966329966,
|
1686 |
+
"eval_loss": 0.12199707329273224,
|
1687 |
+
"eval_runtime": 18.3596,
|
1688 |
+
"eval_samples_per_second": 1.634,
|
1689 |
+
"eval_steps_per_second": 1.634,
|
1690 |
+
"step": 185
|
1691 |
+
}
|
1692 |
+
],
|
1693 |
+
"logging_steps": 1,
|
1694 |
+
"max_steps": 185,
|
1695 |
+
"num_input_tokens_seen": 0,
|
1696 |
+
"num_train_epochs": 1,
|
1697 |
+
"save_steps": 500,
|
1698 |
+
"stateful_callbacks": {
|
1699 |
+
"TrainerControl": {
|
1700 |
+
"args": {
|
1701 |
+
"should_epoch_stop": false,
|
1702 |
+
"should_evaluate": false,
|
1703 |
+
"should_log": false,
|
1704 |
+
"should_save": true,
|
1705 |
+
"should_training_stop": true
|
1706 |
+
},
|
1707 |
+
"attributes": {}
|
1708 |
+
}
|
1709 |
+
},
|
1710 |
+
"total_flos": 664501364736.0,
|
1711 |
+
"train_batch_size": 1,
|
1712 |
+
"trial_name": null,
|
1713 |
+
"trial_params": null
|
1714 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:549e622b17a582e38ce2f4e01eadb3074fb9d02d89f1d257ec75ba841132e4e4
|
3 |
+
size 8120
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,760 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import gc
|
25 |
+
import json
|
26 |
+
import numpy as np
|
27 |
+
from tqdm import tqdm
|
28 |
+
from collections import OrderedDict
|
29 |
+
from dataclasses import dataclass
|
30 |
+
|
31 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
32 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
33 |
+
from deepspeed.utils import logger
|
34 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
35 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
36 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class zero_model_state:
|
41 |
+
buffers: dict()
|
42 |
+
param_shapes: dict()
|
43 |
+
shared_params: list
|
44 |
+
ds_version: int
|
45 |
+
frozen_param_shapes: dict()
|
46 |
+
frozen_param_fragments: dict()
|
47 |
+
|
48 |
+
|
49 |
+
debug = 0
|
50 |
+
|
51 |
+
# load to cpu
|
52 |
+
device = torch.device('cpu')
|
53 |
+
|
54 |
+
|
55 |
+
def atoi(text):
|
56 |
+
return int(text) if text.isdigit() else text
|
57 |
+
|
58 |
+
|
59 |
+
def natural_keys(text):
|
60 |
+
'''
|
61 |
+
alist.sort(key=natural_keys) sorts in human order
|
62 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
63 |
+
(See Toothy's implementation in the comments)
|
64 |
+
'''
|
65 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
66 |
+
|
67 |
+
|
68 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
69 |
+
if not os.path.isdir(checkpoint_dir):
|
70 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
71 |
+
|
72 |
+
# there should be only one file
|
73 |
+
if zero_stage <= 2:
|
74 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
75 |
+
elif zero_stage == 3:
|
76 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
77 |
+
|
78 |
+
if not os.path.exists(file):
|
79 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
80 |
+
|
81 |
+
return file
|
82 |
+
|
83 |
+
|
84 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
85 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
86 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
87 |
+
|
88 |
+
if len(ckpt_files) == 0:
|
89 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
90 |
+
|
91 |
+
return ckpt_files
|
92 |
+
|
93 |
+
|
94 |
+
def get_optim_files(checkpoint_dir):
|
95 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
96 |
+
|
97 |
+
|
98 |
+
def get_model_state_files(checkpoint_dir):
|
99 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
100 |
+
|
101 |
+
|
102 |
+
def parse_model_states(files):
|
103 |
+
zero_model_states = []
|
104 |
+
for file in files:
|
105 |
+
state_dict = torch.load(file, map_location=device, weights_only=False)
|
106 |
+
|
107 |
+
if BUFFER_NAMES not in state_dict:
|
108 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
109 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
110 |
+
if debug:
|
111 |
+
print("Found buffers:", buffer_names)
|
112 |
+
|
113 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
114 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
115 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
116 |
+
|
117 |
+
# collect parameters that are included in param_shapes
|
118 |
+
param_names = []
|
119 |
+
for s in param_shapes:
|
120 |
+
for name in s.keys():
|
121 |
+
param_names.append(name)
|
122 |
+
|
123 |
+
# update with frozen parameters
|
124 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
125 |
+
if frozen_param_shapes is not None:
|
126 |
+
if debug:
|
127 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
128 |
+
param_names += list(frozen_param_shapes.keys())
|
129 |
+
|
130 |
+
# handle shared params
|
131 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
132 |
+
|
133 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
134 |
+
|
135 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
136 |
+
|
137 |
+
z_model_state = zero_model_state(buffers=buffers,
|
138 |
+
param_shapes=param_shapes,
|
139 |
+
shared_params=shared_params,
|
140 |
+
ds_version=ds_version,
|
141 |
+
frozen_param_shapes=frozen_param_shapes,
|
142 |
+
frozen_param_fragments=frozen_param_fragments)
|
143 |
+
zero_model_states.append(z_model_state)
|
144 |
+
|
145 |
+
return zero_model_states
|
146 |
+
|
147 |
+
|
148 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
149 |
+
total_files = len(files)
|
150 |
+
state_dicts = []
|
151 |
+
for f in tqdm(files, desc='Loading checkpoint shards'):
|
152 |
+
state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
|
153 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
154 |
+
# and also handle the case where it was already removed by another helper script
|
155 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
156 |
+
state_dicts.append(state_dict)
|
157 |
+
|
158 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
159 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
160 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
161 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
162 |
+
|
163 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
164 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
165 |
+
# use the max of the partition_count to get the dp world_size.
|
166 |
+
|
167 |
+
if type(world_size) is list:
|
168 |
+
world_size = max(world_size)
|
169 |
+
|
170 |
+
if world_size != total_files:
|
171 |
+
raise ValueError(
|
172 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
173 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
174 |
+
)
|
175 |
+
|
176 |
+
# the groups are named differently in each stage
|
177 |
+
if zero_stage <= 2:
|
178 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
179 |
+
elif zero_stage == 3:
|
180 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
181 |
+
else:
|
182 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
183 |
+
|
184 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
185 |
+
return zero_stage, world_size, fp32_flat_groups
|
186 |
+
|
187 |
+
|
188 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
189 |
+
"""
|
190 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
191 |
+
|
192 |
+
Args:
|
193 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
194 |
+
|
195 |
+
"""
|
196 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
197 |
+
|
198 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
199 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
200 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
201 |
+
|
202 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
203 |
+
|
204 |
+
zero_model_states = parse_model_states(model_files)
|
205 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
206 |
+
|
207 |
+
if zero_stage <= 2:
|
208 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
209 |
+
exclude_frozen_parameters)
|
210 |
+
elif zero_stage == 3:
|
211 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
212 |
+
exclude_frozen_parameters)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _has_callable(obj, fn):
|
248 |
+
attr = getattr(obj, fn, None)
|
249 |
+
return callable(attr)
|
250 |
+
|
251 |
+
|
252 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
253 |
+
param_shapes = zero_model_states[0].param_shapes
|
254 |
+
|
255 |
+
# Reconstruction protocol:
|
256 |
+
#
|
257 |
+
# XXX: document this
|
258 |
+
|
259 |
+
if debug:
|
260 |
+
for i in range(world_size):
|
261 |
+
for j in range(len(fp32_flat_groups[0])):
|
262 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
263 |
+
|
264 |
+
# XXX: memory usage doubles here (zero2)
|
265 |
+
num_param_groups = len(fp32_flat_groups[0])
|
266 |
+
merged_single_partition_of_fp32_groups = []
|
267 |
+
for i in range(num_param_groups):
|
268 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
269 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
270 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
271 |
+
avail_numel = sum(
|
272 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
273 |
+
|
274 |
+
if debug:
|
275 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
276 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
277 |
+
# not asserting if there is a mismatch due to possible padding
|
278 |
+
print(f"Have {avail_numel} numels to process.")
|
279 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
280 |
+
|
281 |
+
# params
|
282 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
283 |
+
# out-of-core computing solution
|
284 |
+
total_numel = 0
|
285 |
+
total_params = 0
|
286 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
287 |
+
offset = 0
|
288 |
+
avail_numel = full_single_fp32_vector.numel()
|
289 |
+
for name, shape in shapes.items():
|
290 |
+
|
291 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
292 |
+
total_numel += unpartitioned_numel
|
293 |
+
total_params += 1
|
294 |
+
|
295 |
+
if debug:
|
296 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
297 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
298 |
+
offset += unpartitioned_numel
|
299 |
+
|
300 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
301 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
302 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
303 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
304 |
+
align_to = 2 * world_size
|
305 |
+
|
306 |
+
def zero2_align(x):
|
307 |
+
return align_to * math.ceil(x / align_to)
|
308 |
+
|
309 |
+
if debug:
|
310 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
311 |
+
|
312 |
+
offset = zero2_align(offset)
|
313 |
+
avail_numel = zero2_align(avail_numel)
|
314 |
+
|
315 |
+
if debug:
|
316 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
317 |
+
|
318 |
+
# Sanity check
|
319 |
+
if offset != avail_numel:
|
320 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
321 |
+
|
322 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
323 |
+
|
324 |
+
|
325 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
326 |
+
exclude_frozen_parameters):
|
327 |
+
state_dict = OrderedDict()
|
328 |
+
|
329 |
+
# buffers
|
330 |
+
buffers = zero_model_states[0].buffers
|
331 |
+
state_dict.update(buffers)
|
332 |
+
if debug:
|
333 |
+
print(f"added {len(buffers)} buffers")
|
334 |
+
|
335 |
+
if not exclude_frozen_parameters:
|
336 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
337 |
+
|
338 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
339 |
+
|
340 |
+
# recover shared parameters
|
341 |
+
for pair in zero_model_states[0].shared_params:
|
342 |
+
if pair[1] in state_dict:
|
343 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
344 |
+
|
345 |
+
return state_dict
|
346 |
+
|
347 |
+
|
348 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
349 |
+
remainder = unpartitioned_numel % world_size
|
350 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
351 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
352 |
+
return partitioned_numel, padding_numel
|
353 |
+
|
354 |
+
|
355 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
356 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
357 |
+
return
|
358 |
+
|
359 |
+
if debug:
|
360 |
+
for i in range(world_size):
|
361 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
362 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
363 |
+
|
364 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
365 |
+
wanted_params = len(frozen_param_shapes)
|
366 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
367 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
368 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
369 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
370 |
+
|
371 |
+
total_params = 0
|
372 |
+
total_numel = 0
|
373 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
374 |
+
total_params += 1
|
375 |
+
unpartitioned_numel = shape.numel()
|
376 |
+
total_numel += unpartitioned_numel
|
377 |
+
|
378 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
379 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
380 |
+
|
381 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
382 |
+
|
383 |
+
if debug:
|
384 |
+
print(
|
385 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
386 |
+
)
|
387 |
+
|
388 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
389 |
+
|
390 |
+
|
391 |
+
class GatheredTensor:
|
392 |
+
"""
|
393 |
+
A pseudo tensor that collects partitioned weights.
|
394 |
+
It is more memory efficient when there are multiple groups.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
|
398 |
+
self.flat_groups = flat_groups
|
399 |
+
self.flat_groups_offset = flat_groups_offset
|
400 |
+
self.offset = offset
|
401 |
+
self.partitioned_numel = partitioned_numel
|
402 |
+
self.shape = shape
|
403 |
+
self.dtype = self.flat_groups[0][0].dtype
|
404 |
+
|
405 |
+
def contiguous(self):
|
406 |
+
"""
|
407 |
+
Merge partitioned weights from flat_groups into a single tensor.
|
408 |
+
"""
|
409 |
+
end_idx = self.offset + self.partitioned_numel
|
410 |
+
world_size = len(self.flat_groups)
|
411 |
+
pad_flat_param_chunks = []
|
412 |
+
|
413 |
+
for rank_i in range(world_size):
|
414 |
+
# for each rank, we need to collect weights from related group/groups
|
415 |
+
flat_groups_at_rank_i = self.flat_groups[rank_i]
|
416 |
+
start_group_id = None
|
417 |
+
end_group_id = None
|
418 |
+
for group_id in range(len(self.flat_groups_offset)):
|
419 |
+
if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
|
420 |
+
start_group_id = group_id
|
421 |
+
if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
|
422 |
+
end_group_id = group_id
|
423 |
+
break
|
424 |
+
# collect weights from related group/groups
|
425 |
+
for group_id in range(start_group_id, end_group_id + 1):
|
426 |
+
flat_tensor = flat_groups_at_rank_i[group_id]
|
427 |
+
start_offset = self.offset - self.flat_groups_offset[group_id]
|
428 |
+
end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
|
429 |
+
pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
|
430 |
+
|
431 |
+
# collect weights from all ranks
|
432 |
+
pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
|
433 |
+
param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
|
434 |
+
return param
|
435 |
+
|
436 |
+
|
437 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
438 |
+
param_shapes = zero_model_states[0].param_shapes
|
439 |
+
avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
|
440 |
+
|
441 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
442 |
+
# param, re-consolidating each param, while dealing with padding if any
|
443 |
+
|
444 |
+
# merge list of dicts, preserving order
|
445 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
446 |
+
|
447 |
+
if debug:
|
448 |
+
for i in range(world_size):
|
449 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
450 |
+
|
451 |
+
wanted_params = len(param_shapes)
|
452 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
453 |
+
# not asserting if there is a mismatch due to possible padding
|
454 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
455 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
456 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
457 |
+
|
458 |
+
# params
|
459 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
460 |
+
# out-of-core computing solution
|
461 |
+
offset = 0
|
462 |
+
total_numel = 0
|
463 |
+
total_params = 0
|
464 |
+
flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
|
465 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
|
466 |
+
unpartitioned_numel = shape.numel()
|
467 |
+
total_numel += unpartitioned_numel
|
468 |
+
total_params += 1
|
469 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
470 |
+
|
471 |
+
if debug:
|
472 |
+
print(
|
473 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
474 |
+
)
|
475 |
+
|
476 |
+
# memory efficient tensor
|
477 |
+
tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
|
478 |
+
state_dict[name] = tensor
|
479 |
+
offset += partitioned_numel
|
480 |
+
|
481 |
+
offset *= world_size
|
482 |
+
|
483 |
+
# Sanity check
|
484 |
+
if offset != avail_numel:
|
485 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
486 |
+
|
487 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
488 |
+
|
489 |
+
|
490 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
491 |
+
exclude_frozen_parameters):
|
492 |
+
state_dict = OrderedDict()
|
493 |
+
|
494 |
+
# buffers
|
495 |
+
buffers = zero_model_states[0].buffers
|
496 |
+
state_dict.update(buffers)
|
497 |
+
if debug:
|
498 |
+
print(f"added {len(buffers)} buffers")
|
499 |
+
|
500 |
+
if not exclude_frozen_parameters:
|
501 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
502 |
+
|
503 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
504 |
+
|
505 |
+
# recover shared parameters
|
506 |
+
for pair in zero_model_states[0].shared_params:
|
507 |
+
if pair[1] in state_dict:
|
508 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
509 |
+
|
510 |
+
return state_dict
|
511 |
+
|
512 |
+
|
513 |
+
def to_torch_tensor(state_dict, return_empty_tensor=False):
|
514 |
+
"""
|
515 |
+
Convert state_dict of GatheredTensor to torch tensor
|
516 |
+
"""
|
517 |
+
torch_state_dict = {}
|
518 |
+
converted_tensors = {}
|
519 |
+
for name, tensor in state_dict.items():
|
520 |
+
tensor_id = id(tensor)
|
521 |
+
if tensor_id in converted_tensors: # shared tensors
|
522 |
+
shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
|
523 |
+
torch_state_dict[name] = shared_tensor
|
524 |
+
else:
|
525 |
+
converted_tensors[tensor_id] = name
|
526 |
+
if return_empty_tensor:
|
527 |
+
torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
|
528 |
+
else:
|
529 |
+
torch_state_dict[name] = tensor.contiguous()
|
530 |
+
return torch_state_dict
|
531 |
+
|
532 |
+
|
533 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
534 |
+
tag=None,
|
535 |
+
exclude_frozen_parameters=False,
|
536 |
+
lazy_mode=False):
|
537 |
+
"""
|
538 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
539 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
540 |
+
via a model hub.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
544 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
545 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
546 |
+
- ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
|
547 |
+
Convert the pesduo tensor to torch tensor by ``.contiguous()``
|
548 |
+
|
549 |
+
Returns:
|
550 |
+
- pytorch ``state_dict``
|
551 |
+
|
552 |
+
A typical usage might be ::
|
553 |
+
|
554 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
555 |
+
# do the training and checkpoint saving
|
556 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
557 |
+
model = model.cpu() # move to cpu
|
558 |
+
model.load_state_dict(state_dict)
|
559 |
+
# submit to model hub or save the model to share with others
|
560 |
+
|
561 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
562 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
563 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
564 |
+
|
565 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
566 |
+
|
567 |
+
Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
|
568 |
+
You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
569 |
+
the checkpoint. Or you can load state_dict in lazy mode ::
|
570 |
+
|
571 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
572 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
|
573 |
+
for name, lazy_tensor in state_dict.item():
|
574 |
+
tensor = lazy_tensor.contiguous() # to cpu
|
575 |
+
print(name, tensor)
|
576 |
+
# del tensor to release memory if it no longer in use
|
577 |
+
"""
|
578 |
+
if tag is None:
|
579 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
580 |
+
if os.path.isfile(latest_path):
|
581 |
+
with open(latest_path, 'r') as fd:
|
582 |
+
tag = fd.read().strip()
|
583 |
+
else:
|
584 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
585 |
+
|
586 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
587 |
+
|
588 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
589 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
590 |
+
|
591 |
+
state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
592 |
+
if lazy_mode:
|
593 |
+
return state_dict
|
594 |
+
else:
|
595 |
+
return to_torch_tensor(state_dict)
|
596 |
+
|
597 |
+
|
598 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
599 |
+
output_dir,
|
600 |
+
max_shard_size="5GB",
|
601 |
+
safe_serialization=False,
|
602 |
+
tag=None,
|
603 |
+
exclude_frozen_parameters=False):
|
604 |
+
"""
|
605 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
606 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
607 |
+
|
608 |
+
Args:
|
609 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
610 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
611 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
612 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
613 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
614 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
615 |
+
"""
|
616 |
+
|
617 |
+
# Dependency pre-check
|
618 |
+
if safe_serialization:
|
619 |
+
try:
|
620 |
+
from safetensors.torch import save_file
|
621 |
+
except ImportError:
|
622 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
623 |
+
raise
|
624 |
+
if max_shard_size is not None:
|
625 |
+
try:
|
626 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
627 |
+
except ImportError:
|
628 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
629 |
+
raise
|
630 |
+
|
631 |
+
# Convert zero checkpoint to state_dict
|
632 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
|
633 |
+
tag,
|
634 |
+
exclude_frozen_parameters,
|
635 |
+
lazy_mode=True)
|
636 |
+
|
637 |
+
# Shard the model if it is too big.
|
638 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
639 |
+
if max_shard_size is not None:
|
640 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
641 |
+
# an memory-efficient approach for sharding
|
642 |
+
empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
|
643 |
+
state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
|
644 |
+
filename_pattern=filename_pattern,
|
645 |
+
max_shard_size=max_shard_size)
|
646 |
+
else:
|
647 |
+
from collections import namedtuple
|
648 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
649 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
650 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
651 |
+
|
652 |
+
# Save the model by shard
|
653 |
+
os.makedirs(output_dir, exist_ok=True)
|
654 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
655 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
656 |
+
shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
|
657 |
+
shard_state_dict = to_torch_tensor(shard_state_dict)
|
658 |
+
output_path = os.path.join(output_dir, shard_file)
|
659 |
+
if safe_serialization:
|
660 |
+
save_file(shard_state_dict, output_path, metadata={"format": "pt"})
|
661 |
+
else:
|
662 |
+
torch.save(shard_state_dict, output_path)
|
663 |
+
# release the memory of current shard
|
664 |
+
for tensor_name in list(shard_state_dict.keys()):
|
665 |
+
del state_dict[tensor_name]
|
666 |
+
del shard_state_dict[tensor_name]
|
667 |
+
del shard_state_dict
|
668 |
+
gc.collect()
|
669 |
+
|
670 |
+
# Save index if sharded
|
671 |
+
if state_dict_split.is_sharded:
|
672 |
+
index = {
|
673 |
+
"metadata": state_dict_split.metadata,
|
674 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
675 |
+
}
|
676 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
677 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
678 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
679 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
680 |
+
f.write(content)
|
681 |
+
|
682 |
+
|
683 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
684 |
+
"""
|
685 |
+
1. Put the provided model to cpu
|
686 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
687 |
+
3. Load it into the provided model
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- ``model``: the model object to update
|
691 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
692 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
693 |
+
|
694 |
+
Returns:
|
695 |
+
- ``model`: modified model
|
696 |
+
|
697 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
698 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
699 |
+
conveniently placed for you in the checkpoint folder.
|
700 |
+
|
701 |
+
A typical usage might be ::
|
702 |
+
|
703 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
704 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
705 |
+
# submit to model hub or save the model to share with others
|
706 |
+
|
707 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
708 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
709 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
710 |
+
|
711 |
+
"""
|
712 |
+
logger.info(f"Extracting fp32 weights")
|
713 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
714 |
+
|
715 |
+
logger.info(f"Overwriting model with fp32 weights")
|
716 |
+
model = model.cpu()
|
717 |
+
model.load_state_dict(state_dict, strict=False)
|
718 |
+
|
719 |
+
return model
|
720 |
+
|
721 |
+
|
722 |
+
if __name__ == "__main__":
|
723 |
+
parser = argparse.ArgumentParser()
|
724 |
+
parser.add_argument("checkpoint_dir",
|
725 |
+
type=str,
|
726 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
727 |
+
parser.add_argument("output_dir",
|
728 |
+
type=str,
|
729 |
+
help="directory to the pytorch fp32 state_dict output files"
|
730 |
+
"(e.g. path/checkpoint-12-output/)")
|
731 |
+
parser.add_argument(
|
732 |
+
"--max_shard_size",
|
733 |
+
type=str,
|
734 |
+
default="5GB",
|
735 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
736 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
737 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
738 |
+
"without CPU OOM issues.")
|
739 |
+
parser.add_argument(
|
740 |
+
"--safe_serialization",
|
741 |
+
default=False,
|
742 |
+
action='store_true',
|
743 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
744 |
+
parser.add_argument("-t",
|
745 |
+
"--tag",
|
746 |
+
type=str,
|
747 |
+
default=None,
|
748 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
749 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
750 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
751 |
+
args = parser.parse_args()
|
752 |
+
|
753 |
+
debug = args.debug
|
754 |
+
|
755 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
756 |
+
args.output_dir,
|
757 |
+
max_shard_size=args.max_shard_size,
|
758 |
+
safe_serialization=args.safe_serialization,
|
759 |
+
tag=args.tag,
|
760 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|