--- language: - hi pipeline_tag: text-generation tags: - hindi - quantization - shuvom/yuj-v1 license: apache-2.0 quantized_by: shuvom --- # yuj-v1-GGUF - Model creator: [shuvom_](https://huggingface.co/shuvom) - Original model: [shuvom/yuj-v1](https://huggingface.co/shuvom/yuj-v1) ## Description This repo contains GGUF format model files for [shuvom/yuj-v1](https://huggingface.co/shuvom/yuj-v1). ### About GGUF GGUF and GGML are file formats used for storing models for inference, especially in the context of language models like GPT (Generative Pre-trained Transformer). It allows you to inference in consumer-grade GPUs and CPUs. [more info.](https://github.com/ggerganov/llama.cpp) ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [yuj-v1.Q4_K_M.gguf](https://huggingface.co/shuvom/yuj-v1-GGUF/blob/main/yuj-v1.Q4_K_M.gguf) | Q4_K_M | 4 | 4.17 GB| 6.87 GB | medium, balanced quality - recommended | ## Usage 1. Installing lamma.cpp python client and HuggingFace-hub ```python !pip install llama-cpp-python huggingface-hub ``` 2. Downloading GGUF formatted model ```python !huggingface-cli download shuvom/yuj-v1-GGUF yuj-v1.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` 3. Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. ```python from llama_cpp import Llama llm = Llama( model_path="./yuj-v1.Q4_K_M.gguf", # Download the model file first n_ctx=2048, # The max sequence length to use - note that longer sequence lengths require much more resources n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available ) ``` 4. Chat Completion API ```python llm = Llama(model_path="/content/yuj-v1.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using llm.create_chat_completion( messages = [ {"role": "system", "content": "You are a story writing assistant."}, { "role": "user", "content": "युज शीर्ष द्विभाषी मॉडल में से एक है" } ] ) ```