Upload handler.py
Browse files- handler.py +93 -0
handler.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from typing import Dict, List, Any
|
4 |
+
# from transformers import pipeline
|
5 |
+
# import holidays
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler():
|
11 |
+
def __init__(self, path=None):
|
12 |
+
# self.pipeline = pipeline("text-classification",model=path)
|
13 |
+
# self.holidays = holidays.US()
|
14 |
+
model_id = 'sijieaaa/CodeModel-V1-3B-2024-02-07'
|
15 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
model_id,
|
17 |
+
# load_in_8bit=True,
|
18 |
+
torch_dtype="auto",
|
19 |
+
device_map="auto"
|
20 |
+
)
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
22 |
+
model_id
|
23 |
+
)
|
24 |
+
self.model.eval()
|
25 |
+
# self.tokenizer.eval()
|
26 |
+
# llm = vllm.LLM(model=model_id,
|
27 |
+
# dtype=torch.bfloat16,
|
28 |
+
# trust_remote_code=True,
|
29 |
+
# quantization="bitsandbytes",
|
30 |
+
# load_format="bitsandbytes")
|
31 |
+
a=1
|
32 |
+
|
33 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
34 |
+
"""
|
35 |
+
data args:
|
36 |
+
inputs (:obj: `str`)
|
37 |
+
date (:obj: `str`)
|
38 |
+
Return:
|
39 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
40 |
+
"""
|
41 |
+
prompt = data["inputs"]
|
42 |
+
|
43 |
+
messages = [
|
44 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
45 |
+
{"role": "user", "content": prompt}
|
46 |
+
]
|
47 |
+
text = self.tokenizer.apply_chat_template(
|
48 |
+
messages,
|
49 |
+
tokenize=False,
|
50 |
+
add_generation_prompt=True
|
51 |
+
)
|
52 |
+
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
|
53 |
+
|
54 |
+
generated_ids = self.model.generate(
|
55 |
+
**model_inputs,
|
56 |
+
max_new_tokens=512
|
57 |
+
)
|
58 |
+
generated_ids = [
|
59 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
60 |
+
]
|
61 |
+
|
62 |
+
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
63 |
+
|
64 |
+
response = [
|
65 |
+
{"role": "assistant", "content": response}
|
66 |
+
]
|
67 |
+
|
68 |
+
# yield response
|
69 |
+
return response
|
70 |
+
|
71 |
+
|
72 |
+
# def test():
|
73 |
+
# # init handler
|
74 |
+
# my_handler = EndpointHandler(path=".")
|
75 |
+
|
76 |
+
# # prepare sample payload
|
77 |
+
# non_holiday_payload = {"inputs": "I am quite excited how this will turn out", "date": "2022-08-08"}
|
78 |
+
# holiday_payload = {"inputs": "Today is a though day", "date": "2022-07-04"}
|
79 |
+
|
80 |
+
# # test the handler
|
81 |
+
# a = my_handler.__call__(non_holiday_payload)
|
82 |
+
# non_holiday_pred=my_handler(non_holiday_payload)
|
83 |
+
# holiday_payload=my_handler(holiday_payload)
|
84 |
+
|
85 |
+
# # show results
|
86 |
+
# print("non_holiday_pred", non_holiday_pred)
|
87 |
+
# print("holiday_payload", holiday_payload)
|
88 |
+
|
89 |
+
# a=1
|
90 |
+
|
91 |
+
|
92 |
+
# if __name__ == "__main__":
|
93 |
+
# test()
|