|
from torch import Generator |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny |
|
import torch |
|
from PIL.Image import Image |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
from diffusers import FluxTransformer2DModel, DiffusionPipeline |
|
import gc |
|
import os |
|
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel |
|
|
|
|
|
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True" |
|
HOME = os.environ["HOME"] |
|
|
|
Pipeline = None |
|
ckpt_id = "black-forest-labs/FLUX.1-schnell" |
|
|
|
def empty_cache(): |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
def load_pipeline() -> Pipeline: |
|
empty_cache() |
|
vae = AutoencoderTiny.from_pretrained("aifeifei798/taef1", torch_dtype=torch.bfloat16) |
|
model = FluxTransformer2DModel.from_pretrained(f"{HOME}/.cache/huggingface/hub/models--slobers--transgender/snapshots/cb99836efa0ed55856970269c42fafdaa0e44c5d", torch_dtype=torch.bfloat16, use_safetensors=False) |
|
text_encoder_2 = T5EncoderModel.from_pretrained("city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=torch.bfloat16) |
|
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, vae=vae, transformer=model, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16) |
|
pipeline.to("cuda") |
|
|
|
for _ in range(2): |
|
empty_cache() |
|
pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256) |
|
return pipeline |
|
|
|
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image: |
|
empty_cache() |
|
generator = Generator("cuda").manual_seed(request.seed) |
|
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0] |
|
return(image) |
|
|