Update src/pipeline.py
Browse files- src/pipeline.py +45 -9
src/pipeline.py
CHANGED
@@ -1,26 +1,62 @@
|
|
1 |
-
|
2 |
-
import gc
|
3 |
from PIL.Image import Image
|
|
|
4 |
from pipelines.models import TextToImageRequest
|
5 |
from torch import Generator
|
6 |
-
import
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
Pipeline = None
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
def load_pipeline() -> Pipeline:
|
13 |
-
|
14 |
-
|
15 |
-
pipeline.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16)
|
16 |
-
pipeline.enable_sequential_cpu_offload()
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
for _ in range(2):
|
19 |
pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
20 |
-
|
21 |
return pipeline
|
22 |
|
|
|
|
|
23 |
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
|
|
|
|
24 |
generator = Generator("cuda").manual_seed(request.seed)
|
25 |
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0]
|
26 |
return(image)
|
|
|
1 |
+
import torch
|
|
|
2 |
from PIL.Image import Image
|
3 |
+
from diffusers import FluxPipeline
|
4 |
from pipelines.models import TextToImageRequest
|
5 |
from torch import Generator
|
6 |
+
#from time import perf_counter
|
7 |
+
import os
|
8 |
+
from diffusers import FluxPipeline, AutoencoderKL
|
9 |
+
from diffusers.image_processor import VaeImageProcessor
|
10 |
+
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
|
11 |
+
import diffusers
|
12 |
+
#from optimum.quanto import freeze, qfloat8, quantize
|
13 |
+
import gc
|
14 |
+
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
15 |
+
#from torchao.quantization import quantize_,int8_weight_only
|
16 |
|
17 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
18 |
Pipeline = None
|
19 |
|
20 |
+
ckpt_id = "black-forest-labs/FLUX.1-schnell"
|
21 |
+
def empty_cache():
|
22 |
+
gc.collect()
|
23 |
+
torch.cuda.empty_cache()
|
24 |
+
torch.cuda.reset_max_memory_allocated()
|
25 |
+
torch.cuda.reset_peak_memory_stats()
|
26 |
|
27 |
def load_pipeline() -> Pipeline:
|
28 |
+
empty_cache()
|
29 |
+
dtype, device = torch.bfloat16, "cuda"
|
|
|
|
|
30 |
|
31 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(
|
32 |
+
"city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=torch.bfloat16
|
33 |
+
)
|
34 |
+
vae=AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype)
|
35 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
36 |
+
ckpt_id,
|
37 |
+
vae=vae,
|
38 |
+
text_encoder_2 = text_encoder_2,
|
39 |
+
torch_dtype=dtype,
|
40 |
+
)
|
41 |
+
# torch.backends.cudnn.benchmark = True
|
42 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
43 |
+
# torch.cuda.set_per_process_memory_fraction(0.99)
|
44 |
+
# pipeline.text_encoder.to(memory_format=torch.channels_last)
|
45 |
+
# pipeline.transformer.to(memory_format=torch.channels_last)
|
46 |
+
# pipeline.vae.to(memory_format=torch.channels_last)
|
47 |
+
# pipeline.vae.enable_tiling()
|
48 |
+
# pipeline.vae = torch.compile(pipeline.vae)
|
49 |
+
# pipeline._exclude_from_cpu_offload = ["vae"]
|
50 |
+
pipeline.enable_sequential_cpu_offload()
|
51 |
for _ in range(2):
|
52 |
pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
|
|
53 |
return pipeline
|
54 |
|
55 |
+
|
56 |
+
@torch.inference_mode()
|
57 |
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
58 |
+
# torch.cuda.reset_peak_memory_stats()
|
59 |
+
# torch.backends.cuda.matmul.allow_tf32 = True
|
60 |
generator = Generator("cuda").manual_seed(request.seed)
|
61 |
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0]
|
62 |
return(image)
|