silencer107 commited on
Commit
65e1d30
·
verified ·
1 Parent(s): 701a733

Update src/pipeline.py

Browse files
Files changed (1) hide show
  1. src/pipeline.py +9 -7
src/pipeline.py CHANGED
@@ -5,19 +5,20 @@ from pipelines.models import TextToImageRequest
5
  from torch import Generator
6
  #from time import perf_counter
7
  import os
8
- from diffusers import FluxPipeline, AutoencoderKL
9
  from diffusers.image_processor import VaeImageProcessor
10
  from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
11
  import diffusers
12
  #from optimum.quanto import freeze, qfloat8, quantize
13
  import gc
14
  from diffusers import FluxTransformer2DModel, DiffusionPipeline
15
- #from torchao.quantization import quantize_,int8_weight_only
16
 
 
17
  os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
18
  Pipeline = None
19
 
20
- ckpt_id = "black-forest-labs/FLUX.1-schnell"
21
  def empty_cache():
22
  gc.collect()
23
  torch.cuda.empty_cache()
@@ -27,9 +28,10 @@ def empty_cache():
27
  def load_pipeline() -> Pipeline:
28
  empty_cache()
29
  dtype, device = torch.bfloat16, "cuda"
30
- text_encoder_2 = T5EncoderModel.from_pretrained("city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=torch.bfloat16)
31
- vae=AutoencoderKL.from_pretrained(ckpt_id, subfolder="vae", torch_dtype=dtype)
32
- pipeline = DiffusionPipeline.from_pretrained(ckpt_id, vae=vae, text_encoder_2 = text_encoder_2, torch_dtype=dtype,)
 
33
  torch.backends.cudnn.benchmark = True
34
  torch.backends.cuda.matmul.allow_tf32 = True
35
  torch.cuda.set_per_process_memory_fraction(0.90)
@@ -38,7 +40,7 @@ def load_pipeline() -> Pipeline:
38
  pipeline.vae.to(memory_format=torch.channels_last)
39
  pipeline.vae.enable_tiling()
40
  pipeline._exclude_from_cpu_offload = ["vae"]
41
- pipeline.enable_sequential_cpu_offload()
42
  for _ in range(2):
43
  pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
44
  empty_cache()
 
5
  from torch import Generator
6
  #from time import perf_counter
7
  import os
8
+ from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
9
  from diffusers.image_processor import VaeImageProcessor
10
  from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
11
  import diffusers
12
  #from optimum.quanto import freeze, qfloat8, quantize
13
  import gc
14
  from diffusers import FluxTransformer2DModel, DiffusionPipeline
15
+ from torchao.quantization import quantize_,int8_weight_only
16
 
17
+ os.environ["TOKENIZERS_PARALLELISM"] = "True"
18
  os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
19
  Pipeline = None
20
 
21
+ ckpt_id = "blobers/tx"
22
  def empty_cache():
23
  gc.collect()
24
  torch.cuda.empty_cache()
 
28
  def load_pipeline() -> Pipeline:
29
  empty_cache()
30
  dtype, device = torch.bfloat16, "cuda"
31
+ vae = AutoencoderTiny.from_pretrained("aifeifei798/taef1", torch_dtype=dtype)
32
+ quantize_(vae, int8_weight_only())
33
+ model = FluxTransformer2DModel.from_pretrained("slobers/transgender", torch_dtype=dtype, use_safetensors=False)
34
+ pipeline = DiffusionPipeline.from_pretrained(ckpt_id, vae=vae, transformer = model, torch_dtype=dtype,)
35
  torch.backends.cudnn.benchmark = True
36
  torch.backends.cuda.matmul.allow_tf32 = True
37
  torch.cuda.set_per_process_memory_fraction(0.90)
 
40
  pipeline.vae.to(memory_format=torch.channels_last)
41
  pipeline.vae.enable_tiling()
42
  pipeline._exclude_from_cpu_offload = ["vae"]
43
+ pipeline.to("cuda")
44
  for _ in range(2):
45
  pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
46
  empty_cache()