Update src/pipeline.py
Browse files- src/pipeline.py +19 -27
src/pipeline.py
CHANGED
@@ -1,53 +1,45 @@
|
|
|
|
1 |
import torch
|
2 |
from PIL.Image import Image
|
3 |
-
from diffusers import FluxPipeline
|
4 |
from pipelines.models import TextToImageRequest
|
5 |
from torch import Generator
|
6 |
-
|
|
|
7 |
import os
|
8 |
-
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
|
9 |
-
from diffusers.image_processor import VaeImageProcessor
|
10 |
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
|
11 |
-
import
|
12 |
-
|
13 |
-
|
14 |
-
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
15 |
-
from torchao.quantization import quantize_,int8_weight_only
|
16 |
HOME = os.environ["HOME"]
|
17 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "True"
|
18 |
-
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
19 |
Pipeline = None
|
|
|
20 |
|
21 |
-
ckpt_id = "slobers/tx"
|
22 |
def empty_cache():
|
23 |
gc.collect()
|
24 |
torch.cuda.empty_cache()
|
25 |
torch.cuda.reset_max_memory_allocated()
|
26 |
torch.cuda.reset_peak_memory_stats()
|
27 |
-
|
28 |
def load_pipeline() -> Pipeline:
|
29 |
empty_cache()
|
30 |
dtype, device = torch.bfloat16, "cuda"
|
31 |
-
|
|
|
|
|
32 |
quantize_(vae, int8_weight_only())
|
33 |
-
|
34 |
-
|
35 |
-
torch.
|
36 |
-
|
37 |
-
torch.cuda.set_per_process_memory_fraction(0.90)
|
38 |
-
pipeline.text_encoder.to(memory_format=torch.channels_last)
|
39 |
-
pipeline.transformer.to(memory_format=torch.channels_last)
|
40 |
-
pipeline.vae.to(memory_format=torch.channels_last)
|
41 |
-
pipeline.vae.enable_tiling()
|
42 |
pipeline.to("cuda")
|
|
|
43 |
for _ in range(2):
|
|
|
44 |
pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
45 |
-
empty_cache()
|
46 |
return pipeline
|
47 |
|
48 |
-
|
49 |
-
@torch.inference_mode()
|
50 |
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
|
|
51 |
generator = Generator("cuda").manual_seed(request.seed)
|
52 |
-
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=
|
53 |
return(image)
|
|
|
1 |
+
from torch import Generator
|
2 |
import torch
|
3 |
from PIL.Image import Image
|
|
|
4 |
from pipelines.models import TextToImageRequest
|
5 |
from torch import Generator
|
6 |
+
from diffusers import FluxTransformer2DModel, DiffusionPipeline
|
7 |
+
import gc
|
8 |
import os
|
|
|
|
|
9 |
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
|
10 |
+
import torch._dynamo
|
11 |
+
from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only
|
12 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"
|
|
|
|
|
13 |
HOME = os.environ["HOME"]
|
|
|
|
|
14 |
Pipeline = None
|
15 |
+
ckpt_id = "black-forest-labs/FLUX.1-schnell"
|
16 |
|
|
|
17 |
def empty_cache():
|
18 |
gc.collect()
|
19 |
torch.cuda.empty_cache()
|
20 |
torch.cuda.reset_max_memory_allocated()
|
21 |
torch.cuda.reset_peak_memory_stats()
|
22 |
+
|
23 |
def load_pipeline() -> Pipeline:
|
24 |
empty_cache()
|
25 |
dtype, device = torch.bfloat16, "cuda"
|
26 |
+
text_encoder = CLIPTextModel.from_pretrained(ckpt_id, subfolder="text_encoder", torch_dtype=torch.bfloat16)
|
27 |
+
quantize_(text_encoder, int8_weight_only())
|
28 |
+
vae = AutoencoderTiny.from_pretrained("RobertML/FLUX.1-schnell-vae_e3m2", torch_dtype=torch.bfloat16)
|
29 |
quantize_(vae, int8_weight_only())
|
30 |
+
text_encoder_2 = T5EncoderModel.from_pretrained("city96/t5-v1_1-xxl-encoder-bf16", torch_dtype=torch.bfloat16)
|
31 |
+
quantize_(text_encoder_2, int8_weight_only())
|
32 |
+
model = FluxTransformer2DModel.from_pretrained(f"{HOME}/.cache/huggingface/hub/models--slobers--transgender/snapshots/cb99836efa0ed55856970269c42fafdaa0e44c5d", torch_dtype=torch.bfloat16, use_safetensors=False)
|
33 |
+
pipeline = DiffusionPipeline.from_pretrained(ckpt_id, text_encoder=text_encoder, transformer=model, text_encoder_2=text_encoder_2, torch_dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
34 |
pipeline.to("cuda")
|
35 |
+
|
36 |
for _ in range(2):
|
37 |
+
empty_cache()
|
38 |
pipeline(prompt="insensible, timbale, pothery, electrovital, actinogram, taxis, intracerebellar, centrodesmus", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
|
|
|
39 |
return pipeline
|
40 |
|
|
|
|
|
41 |
def infer(request: TextToImageRequest, pipeline: Pipeline) -> Image:
|
42 |
+
empty_cache()
|
43 |
generator = Generator("cuda").manual_seed(request.seed)
|
44 |
+
image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=3, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0]
|
45 |
return(image)
|