|
import torch |
|
from time import perf_counter |
|
from PIL.Image import Image |
|
from diffusers import StableDiffusionXLPipeline, DPMSolverMultistepScheduler, AutoencoderTiny, UNet2DConditionModel |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
from sfast.compilers.diffusion_pipeline_compiler import (compile, |
|
CompilationConfig) |
|
|
|
|
|
|
|
def load_pipeline() -> StableDiffusionXLPipeline: |
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
"./models/newdream-sdxl-20/", |
|
torch_dtype=torch.float16, |
|
use_safetensors=True, |
|
variant="fp16", |
|
local_files_only=True,) |
|
pipeline.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16) |
|
pipeline.scheduler = DPMSolverMultistepScheduler.from_config( |
|
pipeline.scheduler.config) |
|
pipeline.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2) |
|
pipeline.to("cuda") |
|
|
|
config = CompilationConfig.Default() |
|
|
|
try: |
|
import xformers |
|
config.enable_xformers = True |
|
except ImportError: |
|
print('xformers not installed, skip') |
|
try: |
|
import triton |
|
config.enable_triton = True |
|
except ImportError: |
|
print('Triton not installed, skip') |
|
|
|
pipeline = compile(pipeline, config) |
|
for _ in range(4): |
|
pipeline(prompt="", num_inference_steps=15,) |
|
|
|
return pipeline |
|
|
|
def infer(request: TextToImageRequest, pipeline: StableDiffusionXLPipeline) -> Image: |
|
generator = Generator(pipeline.device).manual_seed(request.seed) if request.seed else None |
|
|
|
return pipeline( |
|
prompt=request.prompt, |
|
negative_prompt=request.negative_prompt, |
|
width=request.width, |
|
height=request.height, |
|
generator=generator, |
|
num_inference_steps=8, |
|
).images[0] |
|
|