Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,391 @@
|
|
1 |
-
---
|
2 |
-
license: gemma
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: gemma
|
3 |
+
library_name: transformers
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
extra_gated_button_content: Acknowledge license
|
6 |
+
tags:
|
7 |
+
- conversational
|
8 |
+
---
|
9 |
+
|
10 |
+
|
11 |
+
# Silma
|
12 |
+
|
13 |
+
---
|
14 |
+
Thank you for being part of our journey to advance AI for the Arabic-speaking world! 🌟
|
15 |
+
|
16 |
+
**Authors**: [silma.ai](https://silma.ai)
|
17 |
+
|
18 |
+
### Description
|
19 |
+
|
20 |
+
Silma is a leading Generative AI startup dedicated to empowering Arabic speakers with state-of-the-art AI solutions.
|
21 |
+
|
22 |
+
## 🚀 Our Flagship Model: Silma 1.0 🚀
|
23 |
+
**Silma 1.0** is the **TOP-RANKED** Arabic LLM with an impressive **9 billion parameter size**, surpassing models that are over seven times larger. 🏆
|
24 |
+
|
25 |
+
## 👥 Our Team
|
26 |
+
Our team is composed of seasoned **Arabic AI experts** who understand the nuances of the language and cultural considerations, enabling us to build solutions that truly resonate with Arabic users. 🌍✨
|
27 |
+
|
28 |
+
### Usage
|
29 |
+
|
30 |
+
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
|
31 |
+
```sh
|
32 |
+
pip install -U transformers
|
33 |
+
```
|
34 |
+
|
35 |
+
Then, copy the snippet from the section that is relevant for your usecase.
|
36 |
+
|
37 |
+
#### Running with the `pipeline` API
|
38 |
+
|
39 |
+
```python
|
40 |
+
import torch
|
41 |
+
from transformers import pipeline
|
42 |
+
|
43 |
+
pipe = pipeline(
|
44 |
+
"text-generation",
|
45 |
+
model="silma-ai/SILMA-9B-Instruct-v0.8",
|
46 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
47 |
+
device="cuda", # replace with "mps" to run on a Mac device
|
48 |
+
)
|
49 |
+
|
50 |
+
messages = [
|
51 |
+
{"role": "user", "content": "اكتب رسالة تعتذر فيها لمديري في العمل عن الحضور اليوم لأسباب مرضية."},
|
52 |
+
]
|
53 |
+
|
54 |
+
outputs = pipe(messages, max_new_tokens=256)
|
55 |
+
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
|
56 |
+
print(assistant_response)
|
57 |
+
# السلام عليكم ورحمة الله وبركاته، أودّ أن أعتذر عن عدم الحضور إلى العمل اليوم بسبب مرضي. أشكركم على تفهمكم.
|
58 |
+
```
|
59 |
+
|
60 |
+
#### Running the model on a single / multi GPU
|
61 |
+
|
62 |
+
```python
|
63 |
+
# pip install accelerate
|
64 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
65 |
+
import torch
|
66 |
+
|
67 |
+
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
|
68 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
69 |
+
model = AutoModelForCausalLM.from_pretrained(
|
70 |
+
model_id,
|
71 |
+
device_map="auto",
|
72 |
+
torch_dtype=torch.bfloat16,
|
73 |
+
)
|
74 |
+
|
75 |
+
input_text = "Write me a poem about Machine Learning."
|
76 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
77 |
+
|
78 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
79 |
+
print(tokenizer.decode(outputs[0]))
|
80 |
+
```
|
81 |
+
|
82 |
+
You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
|
83 |
+
```python
|
84 |
+
messages = [
|
85 |
+
{"role": "user", "content": "اكتب كود بايثون لتوليد متسلسلة أرقام زوجية."},
|
86 |
+
]
|
87 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
|
88 |
+
|
89 |
+
outputs = model.generate(**input_ids, max_new_tokens=256)
|
90 |
+
print(tokenizer.decode(outputs[0]))
|
91 |
+
|
92 |
+
# def generate_even_numbers(n):
|
93 |
+
# """
|
94 |
+
# This function generates a list of even numbers from 1 to n.
|
95 |
+
#
|
96 |
+
# Args:
|
97 |
+
# n: The upper limit of the range.
|
98 |
+
#
|
99 |
+
# Returns:
|
100 |
+
# A list of even numbers.
|
101 |
+
# """
|
102 |
+
# return [i for i in range(1, n + 1) if i % 2 == 0]
|
103 |
+
|
104 |
+
# Example usage
|
105 |
+
# n = 10
|
106 |
+
# even_numbers = generate_even_numbers(n)
|
107 |
+
# print(f"The first {n} even numbers are: {even_numbers}")
|
108 |
+
|
109 |
+
```
|
110 |
+
|
111 |
+
#### Quantized Versions through `bitsandbytes`
|
112 |
+
|
113 |
+
<details>
|
114 |
+
<summary>
|
115 |
+
Using 8-bit precision (int8)
|
116 |
+
</summary>
|
117 |
+
|
118 |
+
```python
|
119 |
+
# pip install bitsandbytes accelerate
|
120 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
121 |
+
|
122 |
+
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
|
123 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
124 |
+
|
125 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
126 |
+
model = AutoModelForCausalLM.from_pretrained(
|
127 |
+
model_id,
|
128 |
+
quantization_config=quantization_config,
|
129 |
+
)
|
130 |
+
|
131 |
+
input_text = "اذكر خمس انواع فواكه بها نسب عالية من فيتامين ج."
|
132 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
133 |
+
|
134 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
135 |
+
print(tokenizer.decode(outputs[0]))
|
136 |
+
|
137 |
+
# الليمون، البرتقال، الموز، الكيوي، الفراولة
|
138 |
+
|
139 |
+
```
|
140 |
+
</details>
|
141 |
+
|
142 |
+
<details>
|
143 |
+
<summary>
|
144 |
+
Using 4-bit precision
|
145 |
+
</summary>
|
146 |
+
|
147 |
+
```python
|
148 |
+
# pip install bitsandbytes accelerate
|
149 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
150 |
+
|
151 |
+
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
|
152 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
153 |
+
|
154 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
155 |
+
model = AutoModelForCausalLM.from_pretrained(
|
156 |
+
model_id,
|
157 |
+
quantization_config=quantization_config,
|
158 |
+
)
|
159 |
+
|
160 |
+
input_text = "في أي عام توفى صلاح الدين الأيوبي؟"
|
161 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
162 |
+
|
163 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
164 |
+
print(tokenizer.decode(outputs[0]))
|
165 |
+
|
166 |
+
# 1193
|
167 |
+
```
|
168 |
+
</details>
|
169 |
+
|
170 |
+
#### Advanced Usage
|
171 |
+
|
172 |
+
<details>
|
173 |
+
<summary>
|
174 |
+
Torch compile
|
175 |
+
</summary>
|
176 |
+
|
177 |
+
[Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
|
178 |
+
inference of PyTorch modules. The Silma model can be run up to 6x faster by leveraging torch compile.
|
179 |
+
|
180 |
+
Note that two warm-up steps are required before the full inference speed is realised:
|
181 |
+
|
182 |
+
```python
|
183 |
+
import os
|
184 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
185 |
+
|
186 |
+
from transformers import AutoTokenizer, Gemma2ForCausalLM
|
187 |
+
from transformers.cache_utils import HybridCache
|
188 |
+
import torch
|
189 |
+
|
190 |
+
torch.set_float32_matmul_precision("high")
|
191 |
+
|
192 |
+
# load the model + tokenizer
|
193 |
+
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
|
194 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
195 |
+
model = Gemma2ForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
196 |
+
model.to("cuda")
|
197 |
+
|
198 |
+
# apply the torch compile transformation
|
199 |
+
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
200 |
+
|
201 |
+
# pre-process inputs
|
202 |
+
input_text = "من الرئيس الذي تولى المنصب في أمريكا بعد دونالد ترامب؟"
|
203 |
+
model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
204 |
+
prompt_length = model_inputs.input_ids.shape[1]
|
205 |
+
|
206 |
+
# set-up k/v cache
|
207 |
+
past_key_values = HybridCache(
|
208 |
+
config=model.config,
|
209 |
+
max_batch_size=1,
|
210 |
+
max_cache_len=model.config.max_position_embeddings,
|
211 |
+
device=model.device,
|
212 |
+
dtype=model.dtype
|
213 |
+
)
|
214 |
+
|
215 |
+
# enable passing kv cache to generate
|
216 |
+
model._supports_cache_class = True
|
217 |
+
model.generation_config.cache_implementation = None
|
218 |
+
|
219 |
+
# two warm-up steps
|
220 |
+
for idx in range(2):
|
221 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
222 |
+
past_key_values.reset()
|
223 |
+
|
224 |
+
# fast run
|
225 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
226 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
227 |
+
|
228 |
+
# جو بايدن
|
229 |
+
|
230 |
+
```
|
231 |
+
|
232 |
+
For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
|
233 |
+
|
234 |
+
</details>
|
235 |
+
|
236 |
+
### Chat Template
|
237 |
+
|
238 |
+
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|
239 |
+
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
|
240 |
+
|
241 |
+
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
|
242 |
+
|
243 |
+
```python
|
244 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
245 |
+
import transformers
|
246 |
+
import torch
|
247 |
+
|
248 |
+
model_id = "silma-ai/SILMA-9B-Instruct-v0.8"
|
249 |
+
dtype = torch.bfloat16
|
250 |
+
|
251 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
252 |
+
model = AutoModelForCausalLM.from_pretrained(
|
253 |
+
model_id,
|
254 |
+
device_map="cuda",
|
255 |
+
torch_dtype=dtype,)
|
256 |
+
|
257 |
+
chat = [
|
258 |
+
{ "role": "user", "content": "ما اشهر اطارات العمل في البايثون لبناء نماذج الذكاء الاصطناعي؟" },
|
259 |
+
]
|
260 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
261 |
+
```
|
262 |
+
|
263 |
+
At this point, the prompt contains the following text:
|
264 |
+
|
265 |
+
```
|
266 |
+
<bos><start_of_turn>user
|
267 |
+
ما اشهر اطارات العمل في البايثون لبناء نماذج الذكاء الاصطناعي؟<end_of_turn>
|
268 |
+
<start_of_turn>model
|
269 |
+
```
|
270 |
+
|
271 |
+
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
|
272 |
+
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
|
273 |
+
the `<end_of_turn>` token.
|
274 |
+
|
275 |
+
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
|
276 |
+
chat template.
|
277 |
+
|
278 |
+
After the prompt is ready, generation can be performed like this:
|
279 |
+
|
280 |
+
```python
|
281 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
282 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
|
283 |
+
print(tokenizer.decode(outputs[0]))
|
284 |
+
```
|
285 |
+
|
286 |
+
### Inputs and outputs
|
287 |
+
|
288 |
+
* **Input:** Text string, such as a question, a prompt, or a document to be
|
289 |
+
summarized.
|
290 |
+
* **Output:** Generated English-language text in response to the input, such
|
291 |
+
as an answer to a question, or a summary of a document.
|
292 |
+
|
293 |
+
### Citation
|
294 |
+
|
295 |
+
```none
|
296 |
+
@article{silma_01_2024,
|
297 |
+
title={Silma},
|
298 |
+
url={https://www.silma.ai},
|
299 |
+
publisher={Silma},
|
300 |
+
author={Silma Team},
|
301 |
+
year={2024}
|
302 |
+
}
|
303 |
+
```
|
304 |
+
|
305 |
+
## Usage and Limitations
|
306 |
+
|
307 |
+
These models have certain limitations that users should be aware of.
|
308 |
+
|
309 |
+
### Intended Usage
|
310 |
+
|
311 |
+
Open Large Language Models (LLMs) have a wide range of applications across
|
312 |
+
various industries and domains. The following list of potential uses is not
|
313 |
+
comprehensive. The purpose of this list is to provide contextual information
|
314 |
+
about the possible use-cases that the model creators considered as part of model
|
315 |
+
training and development.
|
316 |
+
|
317 |
+
* Content Creation and Communication
|
318 |
+
* Text Generation: These models can be used to generate creative text formats
|
319 |
+
such as poems, scripts, code, marketing copy, and email drafts.
|
320 |
+
* Chatbots and Conversational AI: Power conversational interfaces for customer
|
321 |
+
service, virtual assistants, or interactive applications.
|
322 |
+
* Text Summarization: Generate concise summaries of a text corpus, research
|
323 |
+
papers, or reports.
|
324 |
+
* Research and Education
|
325 |
+
* Natural Language Processing (NLP) Research: These models can serve as a
|
326 |
+
foundation for researchers to experiment with NLP techniques, develop
|
327 |
+
algorithms, and contribute to the advancement of the field.
|
328 |
+
* Language Learning Tools: Support interactive language learning experiences,
|
329 |
+
aiding in grammar correction or providing writing practice.
|
330 |
+
* Knowledge Exploration: Assist researchers in exploring large bodies of text
|
331 |
+
by generating summaries or answering questions about specific topics.
|
332 |
+
|
333 |
+
### Limitations
|
334 |
+
|
335 |
+
* Training Data
|
336 |
+
* The quality and diversity of the training data significantly influence the
|
337 |
+
model's capabilities. Biases or gaps in the training data can lead to
|
338 |
+
limitations in the model's responses.
|
339 |
+
* The scope of the training dataset determines the subject areas the model can
|
340 |
+
handle effectively.
|
341 |
+
* Context and Task Complexity
|
342 |
+
* LLMs are better at tasks that can be framed with clear prompts and
|
343 |
+
instructions. Open-ended or highly complex tasks might be challenging.
|
344 |
+
* A model's performance can be influenced by the amount of context provided
|
345 |
+
(longer context generally leads to better outputs, up to a certain point).
|
346 |
+
* Language Ambiguity and Nuance
|
347 |
+
* Natural language is inherently complex. LLMs might struggle to grasp subtle
|
348 |
+
nuances, sarcasm, or figurative language.
|
349 |
+
* Factual Accuracy
|
350 |
+
* LLMs generate responses based on information they learned from their
|
351 |
+
training datasets, but they are not knowledge bases. They may generate
|
352 |
+
incorrect or outdated factual statements.
|
353 |
+
* Common Sense
|
354 |
+
* LLMs rely on statistical patterns in language. They might lack the ability
|
355 |
+
to apply common sense reasoning in certain situations.
|
356 |
+
|
357 |
+
### Ethical Considerations and Risks
|
358 |
+
|
359 |
+
The development of large language models (LLMs) raises several ethical concerns.
|
360 |
+
In creating an open model, we have carefully considered the following:
|
361 |
+
|
362 |
+
* Bias and Fairness
|
363 |
+
* LLMs trained on large-scale, real-world text data can reflect socio-cultural
|
364 |
+
biases embedded in the training material. These models underwent careful
|
365 |
+
scrutiny, input data pre-processing described and posterior evaluations
|
366 |
+
reported in this card.
|
367 |
+
* Misinformation and Misuse
|
368 |
+
* LLMs can be misused to generate text that is false, misleading, or harmful.
|
369 |
+
* Guidelines are provided for responsible use with the model, see the
|
370 |
+
[Responsible Generative AI Toolkit][rai-toolkit].
|
371 |
+
* Transparency and Accountability:
|
372 |
+
* This model card summarizes details on the models' architecture,
|
373 |
+
capabilities, limitations, and evaluation processes.
|
374 |
+
* A responsibly developed open model offers the opportunity to share
|
375 |
+
innovation by making LLM technology accessible to developers and researchers
|
376 |
+
across the AI ecosystem.
|
377 |
+
|
378 |
+
Risks identified and mitigations:
|
379 |
+
|
380 |
+
* Perpetuation of biases: It's encouraged to perform continuous monitoring
|
381 |
+
(using evaluation metrics, human review) and the exploration of de-biasing
|
382 |
+
techniques during model training, fine-tuning, and other use cases.
|
383 |
+
* Generation of harmful content: Mechanisms and guidelines for content safety
|
384 |
+
are essential. Developers are encouraged to exercise caution and implement
|
385 |
+
appropriate content safety safeguards based on their specific product policies
|
386 |
+
and application use cases.
|
387 |
+
* Privacy violations: Models were trained on data filtered for removal of PII
|
388 |
+
(Personally Identifiable Information). Developers are encouraged to adhere to
|
389 |
+
privacy regulations with privacy-preserving techniques.
|
390 |
+
|
391 |
+
|