File size: 2,365 Bytes
01e567b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
tags:
- summarization
- generated_from_trainer
model-index:
- name: led-risalah_data_v5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# led-risalah_data_v5
This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9222
- Rouge1 Precision: 0.4901
- Rouge1 Recall: 0.1294
- Rouge1 Fmeasure: 0.2036
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 Fmeasure | Rouge1 Precision | Rouge1 Recall |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:----------------:|:-------------:|
| No log | 1.0 | 70 | 1.6479 | 0.2556 | 0.6178 | 0.1618 |
| 1.8512 | 2.0 | 140 | 1.5744 | 0.2745 | 0.6561 | 0.174 |
| 1.4296 | 3.0 | 210 | 1.5595 | 0.2702 | 0.6617 | 0.1704 |
| 1.4296 | 4.0 | 280 | 1.5402 | 0.274 | 0.685 | 0.1719 |
| 1.1976 | 5.0 | 350 | 1.5242 | 0.2728 | 0.676 | 0.1721 |
| 1.0638 | 6.0 | 420 | 1.5383 | 0.2873 | 0.6886 | 0.182 |
| 1.0638 | 7.0 | 490 | 1.5652 | 0.2771 | 0.6636 | 0.1757 |
| 0.9657 | 8.0 | 560 | 1.5797 | 0.2733 | 0.6788 | 0.172 |
| 0.9215 | 9.0 | 630 | 1.5960 | 0.2715 | 0.6644 | 0.1715 |
| 0.849 | 10.0 | 700 | 1.5943 | 0.2681 | 0.6581 | 0.1693 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.15.1
|