update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: DNADebertaK6_Worm
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# DNADebertaK6_Worm
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 1.6161
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 5e-05
|
36 |
+
- train_batch_size: 64
|
37 |
+
- eval_batch_size: 64
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- training_steps: 600001
|
42 |
+
- mixed_precision_training: Native AMP
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:------:|:------:|:---------------:|
|
48 |
+
| 4.5653 | 7.26 | 20000 | 1.8704 |
|
49 |
+
| 1.8664 | 14.53 | 40000 | 1.7762 |
|
50 |
+
| 1.7803 | 21.79 | 60000 | 1.7429 |
|
51 |
+
| 1.7502 | 29.06 | 80000 | 1.7305 |
|
52 |
+
| 1.7329 | 36.32 | 100000 | 1.7185 |
|
53 |
+
| 1.7191 | 43.59 | 120000 | 1.7073 |
|
54 |
+
| 1.7065 | 50.85 | 140000 | 1.6925 |
|
55 |
+
| 1.6945 | 58.12 | 160000 | 1.6877 |
|
56 |
+
| 1.6862 | 65.38 | 180000 | 1.6792 |
|
57 |
+
| 1.6788 | 72.65 | 200000 | 1.6712 |
|
58 |
+
| 1.6729 | 79.91 | 220000 | 1.6621 |
|
59 |
+
| 1.6679 | 87.18 | 240000 | 1.6608 |
|
60 |
+
| 1.6632 | 94.44 | 260000 | 1.6586 |
|
61 |
+
| 1.6582 | 101.71 | 280000 | 1.6585 |
|
62 |
+
| 1.6551 | 108.97 | 300000 | 1.6564 |
|
63 |
+
| 1.6507 | 116.24 | 320000 | 1.6449 |
|
64 |
+
| 1.6481 | 123.5 | 340000 | 1.6460 |
|
65 |
+
| 1.6448 | 130.77 | 360000 | 1.6411 |
|
66 |
+
| 1.6425 | 138.03 | 380000 | 1.6408 |
|
67 |
+
| 1.6387 | 145.3 | 400000 | 1.6358 |
|
68 |
+
| 1.6369 | 152.56 | 420000 | 1.6373 |
|
69 |
+
| 1.6337 | 159.83 | 440000 | 1.6364 |
|
70 |
+
| 1.6312 | 167.09 | 460000 | 1.6303 |
|
71 |
+
| 1.6298 | 174.36 | 480000 | 1.6346 |
|
72 |
+
| 1.6273 | 181.62 | 500000 | 1.6272 |
|
73 |
+
| 1.6244 | 188.88 | 520000 | 1.6268 |
|
74 |
+
| 1.6225 | 196.15 | 540000 | 1.6295 |
|
75 |
+
| 1.6207 | 203.41 | 560000 | 1.6206 |
|
76 |
+
| 1.6186 | 210.68 | 580000 | 1.6277 |
|
77 |
+
| 1.6171 | 217.94 | 600000 | 1.6161 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.19.2
|
83 |
+
- Pytorch 1.11.0
|
84 |
+
- Datasets 2.2.2
|
85 |
+
- Tokenizers 0.12.1
|