File size: 8,756 Bytes
3980395 ebf6261 3980395 ebf6261 3980395 ebf6261 3980395 ebf6261 3980395 ebf6261 3980395 ebf6261 3980395 ebf6261 3980395 ebf6261 3980395 ebf6261 3980395 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
{
"results": {
"hellaswag": {
"alias": "hellaswag",
"acc,none": 0.25492929695279826,
"acc_stderr,none": 0.004349307702735166,
"acc_norm,none": 0.26010754829715194,
"acc_norm_stderr,none": 0.004377965074211624
},
"sciq": {
"alias": "sciq",
"acc,none": 0.195,
"acc_stderr,none": 0.012535235623319334,
"acc_norm,none": 0.216,
"acc_norm_stderr,none": 0.013019735539307803
}
},
"group_subtasks": {
"hellaswag": [],
"sciq": []
},
"configs": {
"hellaswag": {
"task": "hellaswag",
"tag": [
"multiple_choice"
],
"dataset_path": "hellaswag",
"dataset_kwargs": {
"trust_remote_code": true
},
"training_split": "train",
"validation_split": "validation",
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
"doc_to_text": "{{query}}",
"doc_to_target": "{{label}}",
"doc_to_choice": "choices",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": false,
"metadata": {
"version": 1.0
}
},
"sciq": {
"task": "sciq",
"dataset_path": "sciq",
"training_split": "train",
"validation_split": "validation",
"test_split": "test",
"doc_to_text": "{{support.lstrip()}}\nQuestion: {{question}}\nAnswer:",
"doc_to_target": 3,
"doc_to_choice": "{{[distractor1, distractor2, distractor3, correct_answer]}}",
"description": "",
"target_delimiter": " ",
"fewshot_delimiter": "\n\n",
"num_fewshot": 0,
"metric_list": [
{
"metric": "acc",
"aggregation": "mean",
"higher_is_better": true
},
{
"metric": "acc_norm",
"aggregation": "mean",
"higher_is_better": true
}
],
"output_type": "multiple_choice",
"repeats": 1,
"should_decontaminate": true,
"doc_to_decontamination_query": "{{support}} {{question}}",
"metadata": {
"version": 1.0
}
}
},
"versions": {
"hellaswag": 1.0,
"sciq": 1.0
},
"n-shot": {
"hellaswag": 0,
"sciq": 0
},
"higher_is_better": {
"hellaswag": {
"acc": true,
"acc_norm": true
},
"sciq": {
"acc": true,
"acc_norm": true
}
},
"n-samples": {
"sciq": {
"original": 1000,
"effective": 1000
},
"hellaswag": {
"original": 10042,
"effective": 10042
}
},
"config": {
"model": "hf",
"model_args": "pretrained=EleutherAI/pythia-70m,revision=step0,dtype=float,trust_remote_code=True",
"model_num_parameters": 70426624,
"model_dtype": "torch.float32",
"model_revision": "step0",
"model_sha": "61c46343f90c4d113efdfe09eb195382dd242200",
"batch_size": "8",
"batch_sizes": [],
"device": "cuda:0",
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234
},
"git_hash": "a5b7c41",
"date": 1729863770.9386845,
"pretty_env_info": "PyTorch version: 2.5.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: 14.0.0-1ubuntu1.1\nCMake version: version 3.30.5\nLibc version: glibc-2.35\n\nPython version: 3.10.12 (main, Sep 11 2024, 15:47:36) [GCC 11.4.0] (64-bit runtime)\nPython platform: Linux-6.1.85+-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.2.140\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: GPU 0: Tesla T4\nNvidia driver version: 535.104.05\ncuDNN version: Probably one of the following:\n/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6\n/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 46 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 2\nOn-line CPU(s) list: 0,1\nVendor ID: GenuineIntel\nModel name: Intel(R) Xeon(R) CPU @ 2.00GHz\nCPU family: 6\nModel: 85\nThread(s) per core: 2\nCore(s) per socket: 1\nSocket(s): 1\nStepping: 3\nBogoMIPS: 4000.42\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat md_clear arch_capabilities\nHypervisor vendor: KVM\nVirtualization type: full\nL1d cache: 32 KiB (1 instance)\nL1i cache: 32 KiB (1 instance)\nL2 cache: 1 MiB (1 instance)\nL3 cache: 38.5 MiB (1 instance)\nNUMA node(s): 1\nNUMA node0 CPU(s): 0,1\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Mitigation; PTE Inversion\nVulnerability Mds: Vulnerable; SMT Host state unknown\nVulnerability Meltdown: Vulnerable\nVulnerability Mmio stale data: Vulnerable\nVulnerability Reg file data sampling: Not affected\nVulnerability Retbleed: Vulnerable\nVulnerability Spec rstack overflow: Not affected\nVulnerability Spec store bypass: Vulnerable\nVulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers\nVulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Not affected; BHI: Vulnerable (Syscall hardening enabled)\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Vulnerable\n\nVersions of relevant libraries:\n[pip3] mypy==1.13.0\n[pip3] mypy-extensions==1.0.0\n[pip3] numpy==1.26.4\n[pip3] optree==0.13.0\n[pip3] torch==2.5.0+cu121\n[pip3] torchaudio==2.5.0+cu121\n[pip3] torchsummary==1.5.1\n[pip3] torchvision==0.20.0+cu121\n[conda] Could not collect",
"transformers_version": "4.44.2",
"upper_git_hash": null,
"tokenizer_pad_token": [
"<|endoftext|>",
"0"
],
"tokenizer_eos_token": [
"<|endoftext|>",
"0"
],
"tokenizer_bos_token": [
"<|endoftext|>",
"0"
],
"eot_token_id": 0,
"max_length": 2048,
"task_hashes": {},
"model_source": "hf",
"model_name": "EleutherAI/pythia-70m",
"model_name_sanitized": "EleutherAI__pythia-70m",
"system_instruction": null,
"system_instruction_sha": null,
"fewshot_as_multiturn": false,
"chat_template": null,
"chat_template_sha": null,
"start_time": 4692.118664113,
"end_time": 4888.466629147,
"total_evaluation_time_seconds": "196.34796503400048"
} |