update model card README.md
Browse files
README.md
CHANGED
@@ -1,24 +1,24 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
#
|
17 |
|
18 |
-
This model is a fine-tuned version of [
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Accuracy: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -50,156 +50,156 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
-
| No log | 1.0 |
|
54 |
-
| No log | 2.0 |
|
55 |
-
|
|
56 |
-
|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.
|
143 |
-
| 0.
|
144 |
-
| 0.
|
145 |
-
| 0.
|
146 |
-
| 0.
|
147 |
-
| 0.
|
148 |
-
| 0.
|
149 |
-
| 0.
|
150 |
-
| 0.
|
151 |
-
| 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.
|
183 |
-
| 0.
|
184 |
-
| 0.
|
185 |
-
| 0.
|
186 |
-
| 0.
|
187 |
-
| 0.
|
188 |
-
| 0.
|
189 |
-
| 0.
|
190 |
-
| 0.
|
191 |
-
| 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.
|
203 |
|
204 |
|
205 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: roberta-large
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
+
- name: roberta-large-sst-2-64-13
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
+
# roberta-large-sst-2-64-13
|
17 |
|
18 |
+
This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.7353
|
21 |
+
- Accuracy: 0.9219
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 4 | 0.6943 | 0.5 |
|
54 |
+
| No log | 2.0 | 8 | 0.6943 | 0.5 |
|
55 |
+
| 0.6976 | 3.0 | 12 | 0.6942 | 0.5 |
|
56 |
+
| 0.6976 | 4.0 | 16 | 0.6942 | 0.5 |
|
57 |
+
| 0.6988 | 5.0 | 20 | 0.6941 | 0.5 |
|
58 |
+
| 0.6988 | 6.0 | 24 | 0.6940 | 0.5 |
|
59 |
+
| 0.6988 | 7.0 | 28 | 0.6938 | 0.5 |
|
60 |
+
| 0.7045 | 8.0 | 32 | 0.6937 | 0.5 |
|
61 |
+
| 0.7045 | 9.0 | 36 | 0.6936 | 0.5 |
|
62 |
+
| 0.7032 | 10.0 | 40 | 0.6935 | 0.5 |
|
63 |
+
| 0.7032 | 11.0 | 44 | 0.6933 | 0.5 |
|
64 |
+
| 0.7032 | 12.0 | 48 | 0.6932 | 0.5 |
|
65 |
+
| 0.6994 | 13.0 | 52 | 0.6931 | 0.5078 |
|
66 |
+
| 0.6994 | 14.0 | 56 | 0.6929 | 0.5 |
|
67 |
+
| 0.6909 | 15.0 | 60 | 0.6928 | 0.5 |
|
68 |
+
| 0.6909 | 16.0 | 64 | 0.6926 | 0.5 |
|
69 |
+
| 0.6909 | 17.0 | 68 | 0.6925 | 0.5 |
|
70 |
+
| 0.6985 | 18.0 | 72 | 0.6925 | 0.5 |
|
71 |
+
| 0.6985 | 19.0 | 76 | 0.6924 | 0.5 |
|
72 |
+
| 0.6963 | 20.0 | 80 | 0.6922 | 0.5 |
|
73 |
+
| 0.6963 | 21.0 | 84 | 0.6919 | 0.5 |
|
74 |
+
| 0.6963 | 22.0 | 88 | 0.6915 | 0.5 |
|
75 |
+
| 0.6926 | 23.0 | 92 | 0.6911 | 0.5 |
|
76 |
+
| 0.6926 | 24.0 | 96 | 0.6907 | 0.5 |
|
77 |
+
| 0.6825 | 25.0 | 100 | 0.6904 | 0.5156 |
|
78 |
+
| 0.6825 | 26.0 | 104 | 0.6905 | 0.6172 |
|
79 |
+
| 0.6825 | 27.0 | 108 | 0.6907 | 0.625 |
|
80 |
+
| 0.6758 | 28.0 | 112 | 0.6908 | 0.625 |
|
81 |
+
| 0.6758 | 29.0 | 116 | 0.6910 | 0.6406 |
|
82 |
+
| 0.6721 | 30.0 | 120 | 0.6914 | 0.6406 |
|
83 |
+
| 0.6721 | 31.0 | 124 | 0.6910 | 0.6406 |
|
84 |
+
| 0.6721 | 32.0 | 128 | 0.6929 | 0.6406 |
|
85 |
+
| 0.656 | 33.0 | 132 | 0.7045 | 0.6328 |
|
86 |
+
| 0.656 | 34.0 | 136 | 0.6919 | 0.625 |
|
87 |
+
| 0.6341 | 35.0 | 140 | 0.6678 | 0.6094 |
|
88 |
+
| 0.6341 | 36.0 | 144 | 0.6400 | 0.6641 |
|
89 |
+
| 0.6341 | 37.0 | 148 | 0.6108 | 0.7188 |
|
90 |
+
| 0.5848 | 38.0 | 152 | 0.5701 | 0.8047 |
|
91 |
+
| 0.5848 | 39.0 | 156 | 0.5212 | 0.8203 |
|
92 |
+
| 0.4973 | 40.0 | 160 | 0.4351 | 0.8828 |
|
93 |
+
| 0.4973 | 41.0 | 164 | 0.3442 | 0.9141 |
|
94 |
+
| 0.4973 | 42.0 | 168 | 0.3130 | 0.9141 |
|
95 |
+
| 0.3116 | 43.0 | 172 | 0.2974 | 0.9141 |
|
96 |
+
| 0.3116 | 44.0 | 176 | 0.2484 | 0.9219 |
|
97 |
+
| 0.1461 | 45.0 | 180 | 0.3085 | 0.9219 |
|
98 |
+
| 0.1461 | 46.0 | 184 | 0.2781 | 0.9375 |
|
99 |
+
| 0.1461 | 47.0 | 188 | 0.3257 | 0.9141 |
|
100 |
+
| 0.0428 | 48.0 | 192 | 0.4080 | 0.9141 |
|
101 |
+
| 0.0428 | 49.0 | 196 | 0.4824 | 0.9062 |
|
102 |
+
| 0.0032 | 50.0 | 200 | 0.5675 | 0.9141 |
|
103 |
+
| 0.0032 | 51.0 | 204 | 0.6358 | 0.9141 |
|
104 |
+
| 0.0032 | 52.0 | 208 | 0.6670 | 0.9141 |
|
105 |
+
| 0.0357 | 53.0 | 212 | 0.4577 | 0.9219 |
|
106 |
+
| 0.0357 | 54.0 | 216 | 0.6720 | 0.8984 |
|
107 |
+
| 0.0164 | 55.0 | 220 | 0.4812 | 0.9375 |
|
108 |
+
| 0.0164 | 56.0 | 224 | 0.6915 | 0.9141 |
|
109 |
+
| 0.0164 | 57.0 | 228 | 0.6746 | 0.9219 |
|
110 |
+
| 0.0004 | 58.0 | 232 | 0.6806 | 0.9219 |
|
111 |
+
| 0.0004 | 59.0 | 236 | 0.6390 | 0.9219 |
|
112 |
+
| 0.05 | 60.0 | 240 | 0.7852 | 0.8984 |
|
113 |
+
| 0.05 | 61.0 | 244 | 0.6347 | 0.9219 |
|
114 |
+
| 0.05 | 62.0 | 248 | 0.8325 | 0.8984 |
|
115 |
+
| 0.0024 | 63.0 | 252 | 0.8310 | 0.8906 |
|
116 |
+
| 0.0024 | 64.0 | 256 | 0.5289 | 0.9375 |
|
117 |
+
| 0.048 | 65.0 | 260 | 0.9447 | 0.875 |
|
118 |
+
| 0.048 | 66.0 | 264 | 0.8435 | 0.8906 |
|
119 |
+
| 0.048 | 67.0 | 268 | 0.5268 | 0.9297 |
|
120 |
+
| 0.0299 | 68.0 | 272 | 0.7885 | 0.9062 |
|
121 |
+
| 0.0299 | 69.0 | 276 | 0.8814 | 0.8906 |
|
122 |
+
| 0.0506 | 70.0 | 280 | 0.4846 | 0.9453 |
|
123 |
+
| 0.0506 | 71.0 | 284 | 0.7900 | 0.8984 |
|
124 |
+
| 0.0506 | 72.0 | 288 | 0.7042 | 0.9141 |
|
125 |
+
| 0.0003 | 73.0 | 292 | 0.6504 | 0.9141 |
|
126 |
+
| 0.0003 | 74.0 | 296 | 0.5608 | 0.9219 |
|
127 |
+
| 0.0002 | 75.0 | 300 | 0.5473 | 0.9375 |
|
128 |
+
| 0.0002 | 76.0 | 304 | 0.5033 | 0.9453 |
|
129 |
+
| 0.0002 | 77.0 | 308 | 0.5022 | 0.9453 |
|
130 |
+
| 0.0013 | 78.0 | 312 | 0.5551 | 0.9375 |
|
131 |
+
| 0.0013 | 79.0 | 316 | 0.5786 | 0.9375 |
|
132 |
+
| 0.0002 | 80.0 | 320 | 0.5848 | 0.9375 |
|
133 |
+
| 0.0002 | 81.0 | 324 | 0.5882 | 0.9375 |
|
134 |
+
| 0.0002 | 82.0 | 328 | 0.5904 | 0.9375 |
|
135 |
+
| 0.0002 | 83.0 | 332 | 0.5924 | 0.9375 |
|
136 |
+
| 0.0002 | 84.0 | 336 | 0.5952 | 0.9375 |
|
137 |
+
| 0.0001 | 85.0 | 340 | 0.5985 | 0.9375 |
|
138 |
+
| 0.0001 | 86.0 | 344 | 0.5289 | 0.9453 |
|
139 |
+
| 0.0001 | 87.0 | 348 | 0.6739 | 0.9141 |
|
140 |
+
| 0.0496 | 88.0 | 352 | 0.5325 | 0.9453 |
|
141 |
+
| 0.0496 | 89.0 | 356 | 0.6028 | 0.9297 |
|
142 |
+
| 0.0002 | 90.0 | 360 | 0.6686 | 0.9219 |
|
143 |
+
| 0.0002 | 91.0 | 364 | 0.8086 | 0.8984 |
|
144 |
+
| 0.0002 | 92.0 | 368 | 0.8812 | 0.8984 |
|
145 |
+
| 0.0001 | 93.0 | 372 | 0.8931 | 0.8906 |
|
146 |
+
| 0.0001 | 94.0 | 376 | 0.9064 | 0.8828 |
|
147 |
+
| 0.0001 | 95.0 | 380 | 0.9333 | 0.8906 |
|
148 |
+
| 0.0001 | 96.0 | 384 | 0.9439 | 0.8828 |
|
149 |
+
| 0.0001 | 97.0 | 388 | 0.9442 | 0.8828 |
|
150 |
+
| 0.0001 | 98.0 | 392 | 0.9427 | 0.8828 |
|
151 |
+
| 0.0001 | 99.0 | 396 | 0.9359 | 0.8984 |
|
152 |
+
| 0.0001 | 100.0 | 400 | 0.9406 | 0.8984 |
|
153 |
+
| 0.0001 | 101.0 | 404 | 0.9439 | 0.8984 |
|
154 |
+
| 0.0001 | 102.0 | 408 | 0.9448 | 0.8984 |
|
155 |
+
| 0.0001 | 103.0 | 412 | 0.6907 | 0.9219 |
|
156 |
+
| 0.0001 | 104.0 | 416 | 0.6708 | 0.9297 |
|
157 |
+
| 0.0301 | 105.0 | 420 | 0.8172 | 0.9062 |
|
158 |
+
| 0.0301 | 106.0 | 424 | 0.5607 | 0.9453 |
|
159 |
+
| 0.0301 | 107.0 | 428 | 0.6901 | 0.9297 |
|
160 |
+
| 0.0001 | 108.0 | 432 | 0.9126 | 0.9062 |
|
161 |
+
| 0.0001 | 109.0 | 436 | 0.9327 | 0.9062 |
|
162 |
+
| 0.0234 | 110.0 | 440 | 0.7272 | 0.9219 |
|
163 |
+
| 0.0234 | 111.0 | 444 | 0.6046 | 0.9375 |
|
164 |
+
| 0.0234 | 112.0 | 448 | 0.6453 | 0.9219 |
|
165 |
+
| 0.0006 | 113.0 | 452 | 0.6153 | 0.9375 |
|
166 |
+
| 0.0006 | 114.0 | 456 | 0.6766 | 0.9219 |
|
167 |
+
| 0.0001 | 115.0 | 460 | 0.7189 | 0.9062 |
|
168 |
+
| 0.0001 | 116.0 | 464 | 0.7305 | 0.9219 |
|
169 |
+
| 0.0001 | 117.0 | 468 | 0.6532 | 0.9297 |
|
170 |
+
| 0.0001 | 118.0 | 472 | 0.6502 | 0.9375 |
|
171 |
+
| 0.0001 | 119.0 | 476 | 0.6532 | 0.9375 |
|
172 |
+
| 0.0001 | 120.0 | 480 | 0.6551 | 0.9375 |
|
173 |
+
| 0.0001 | 121.0 | 484 | 0.6564 | 0.9375 |
|
174 |
+
| 0.0001 | 122.0 | 488 | 0.6568 | 0.9375 |
|
175 |
+
| 0.0001 | 123.0 | 492 | 0.6573 | 0.9375 |
|
176 |
+
| 0.0001 | 124.0 | 496 | 0.6582 | 0.9375 |
|
177 |
+
| 0.0001 | 125.0 | 500 | 0.6598 | 0.9375 |
|
178 |
+
| 0.0001 | 126.0 | 504 | 0.6614 | 0.9375 |
|
179 |
+
| 0.0001 | 127.0 | 508 | 0.6634 | 0.9375 |
|
180 |
+
| 0.0001 | 128.0 | 512 | 0.6651 | 0.9375 |
|
181 |
+
| 0.0001 | 129.0 | 516 | 0.6666 | 0.9375 |
|
182 |
+
| 0.0 | 130.0 | 520 | 0.6678 | 0.9375 |
|
183 |
+
| 0.0 | 131.0 | 524 | 0.6668 | 0.9375 |
|
184 |
+
| 0.0 | 132.0 | 528 | 0.6638 | 0.9375 |
|
185 |
+
| 0.0001 | 133.0 | 532 | 0.6921 | 0.9297 |
|
186 |
+
| 0.0001 | 134.0 | 536 | 0.7904 | 0.9219 |
|
187 |
+
| 0.0001 | 135.0 | 540 | 0.7349 | 0.9219 |
|
188 |
+
| 0.0001 | 136.0 | 544 | 0.7261 | 0.9297 |
|
189 |
+
| 0.0001 | 137.0 | 548 | 0.7197 | 0.9297 |
|
190 |
+
| 0.0 | 138.0 | 552 | 0.7119 | 0.9297 |
|
191 |
+
| 0.0 | 139.0 | 556 | 0.7039 | 0.9297 |
|
192 |
+
| 0.0 | 140.0 | 560 | 0.7150 | 0.9219 |
|
193 |
+
| 0.0 | 141.0 | 564 | 0.7269 | 0.9219 |
|
194 |
+
| 0.0 | 142.0 | 568 | 0.7302 | 0.9219 |
|
195 |
+
| 0.0 | 143.0 | 572 | 0.7314 | 0.9219 |
|
196 |
+
| 0.0 | 144.0 | 576 | 0.7320 | 0.9219 |
|
197 |
+
| 0.0 | 145.0 | 580 | 0.7331 | 0.9219 |
|
198 |
+
| 0.0 | 146.0 | 584 | 0.7339 | 0.9219 |
|
199 |
+
| 0.0 | 147.0 | 588 | 0.7345 | 0.9219 |
|
200 |
+
| 0.0 | 148.0 | 592 | 0.7350 | 0.9219 |
|
201 |
+
| 0.0 | 149.0 | 596 | 0.7352 | 0.9219 |
|
202 |
+
| 0.0 | 150.0 | 600 | 0.7353 | 0.9219 |
|
203 |
|
204 |
|
205 |
### Framework versions
|