--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-uncased-sst-2-64-13-smoothed results: [] --- # bert-base-uncased-sst-2-64-13-smoothed This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6180 - Accuracy: 0.8281 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 75 - label_smoothing_factor: 0.45 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 4 | 0.6942 | 0.5234 | | No log | 2.0 | 8 | 0.6933 | 0.5547 | | 0.6914 | 3.0 | 12 | 0.6922 | 0.5547 | | 0.6914 | 4.0 | 16 | 0.6906 | 0.5469 | | 0.692 | 5.0 | 20 | 0.6887 | 0.5781 | | 0.692 | 6.0 | 24 | 0.6867 | 0.6328 | | 0.692 | 7.0 | 28 | 0.6841 | 0.6406 | | 0.6784 | 8.0 | 32 | 0.6813 | 0.6406 | | 0.6784 | 9.0 | 36 | 0.6780 | 0.6484 | | 0.6647 | 10.0 | 40 | 0.6731 | 0.6484 | | 0.6647 | 11.0 | 44 | 0.6674 | 0.7188 | | 0.6647 | 12.0 | 48 | 0.6615 | 0.7344 | | 0.6336 | 13.0 | 52 | 0.6535 | 0.7109 | | 0.6336 | 14.0 | 56 | 0.6475 | 0.7422 | | 0.5851 | 15.0 | 60 | 0.6394 | 0.7812 | | 0.5851 | 16.0 | 64 | 0.6344 | 0.7656 | | 0.5851 | 17.0 | 68 | 0.6371 | 0.7578 | | 0.5508 | 18.0 | 72 | 0.6343 | 0.7656 | | 0.5508 | 19.0 | 76 | 0.6337 | 0.7734 | | 0.5412 | 20.0 | 80 | 0.6377 | 0.7578 | | 0.5412 | 21.0 | 84 | 0.6349 | 0.7812 | | 0.5412 | 22.0 | 88 | 0.6269 | 0.7891 | | 0.5393 | 23.0 | 92 | 0.6227 | 0.8281 | | 0.5393 | 24.0 | 96 | 0.6209 | 0.8203 | | 0.5375 | 25.0 | 100 | 0.6198 | 0.8203 | | 0.5375 | 26.0 | 104 | 0.6194 | 0.8359 | | 0.5375 | 27.0 | 108 | 0.6205 | 0.8203 | | 0.5377 | 28.0 | 112 | 0.6223 | 0.8125 | | 0.5377 | 29.0 | 116 | 0.6236 | 0.8047 | | 0.537 | 30.0 | 120 | 0.6235 | 0.8047 | | 0.537 | 31.0 | 124 | 0.6250 | 0.7891 | | 0.537 | 32.0 | 128 | 0.6243 | 0.7969 | | 0.5375 | 33.0 | 132 | 0.6215 | 0.8281 | | 0.5375 | 34.0 | 136 | 0.6206 | 0.8203 | | 0.5368 | 35.0 | 140 | 0.6201 | 0.8281 | | 0.5368 | 36.0 | 144 | 0.6200 | 0.8359 | | 0.5368 | 37.0 | 148 | 0.6198 | 0.8359 | | 0.5363 | 38.0 | 152 | 0.6199 | 0.8281 | | 0.5363 | 39.0 | 156 | 0.6202 | 0.8203 | | 0.5365 | 40.0 | 160 | 0.6198 | 0.8281 | | 0.5365 | 41.0 | 164 | 0.6192 | 0.8359 | | 0.5365 | 42.0 | 168 | 0.6192 | 0.8438 | | 0.5369 | 43.0 | 172 | 0.6188 | 0.8281 | | 0.5369 | 44.0 | 176 | 0.6192 | 0.8203 | | 0.5363 | 45.0 | 180 | 0.6196 | 0.8203 | | 0.5363 | 46.0 | 184 | 0.6186 | 0.8203 | | 0.5363 | 47.0 | 188 | 0.6182 | 0.8359 | | 0.5362 | 48.0 | 192 | 0.6181 | 0.8359 | | 0.5362 | 49.0 | 196 | 0.6182 | 0.8203 | | 0.5365 | 50.0 | 200 | 0.6182 | 0.8203 | | 0.5365 | 51.0 | 204 | 0.6179 | 0.8359 | | 0.5365 | 52.0 | 208 | 0.6177 | 0.8359 | | 0.5359 | 53.0 | 212 | 0.6175 | 0.8359 | | 0.5359 | 54.0 | 216 | 0.6174 | 0.8281 | | 0.5366 | 55.0 | 220 | 0.6174 | 0.8359 | | 0.5366 | 56.0 | 224 | 0.6175 | 0.8359 | | 0.5366 | 57.0 | 228 | 0.6176 | 0.8359 | | 0.5362 | 58.0 | 232 | 0.6177 | 0.8359 | | 0.5362 | 59.0 | 236 | 0.6179 | 0.8359 | | 0.5359 | 60.0 | 240 | 0.6179 | 0.8359 | | 0.5359 | 61.0 | 244 | 0.6178 | 0.8359 | | 0.5359 | 62.0 | 248 | 0.6177 | 0.8359 | | 0.5358 | 63.0 | 252 | 0.6178 | 0.8359 | | 0.5358 | 64.0 | 256 | 0.6179 | 0.8359 | | 0.5361 | 65.0 | 260 | 0.6181 | 0.8281 | | 0.5361 | 66.0 | 264 | 0.6182 | 0.8281 | | 0.5361 | 67.0 | 268 | 0.6181 | 0.8281 | | 0.5358 | 68.0 | 272 | 0.6181 | 0.8281 | | 0.5358 | 69.0 | 276 | 0.6181 | 0.8281 | | 0.5362 | 70.0 | 280 | 0.6180 | 0.8281 | | 0.5362 | 71.0 | 284 | 0.6180 | 0.8359 | | 0.5362 | 72.0 | 288 | 0.6180 | 0.8359 | | 0.5356 | 73.0 | 292 | 0.6180 | 0.8359 | | 0.5356 | 74.0 | 296 | 0.6180 | 0.8281 | | 0.5358 | 75.0 | 300 | 0.6180 | 0.8281 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.4.0 - Tokenizers 0.13.3