update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
@@ -15,10 +15,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
# best_model-yelp_polarity-16-42
|
17 |
|
18 |
-
This model is a fine-tuned version of [
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Accuracy: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -50,156 +50,156 @@ The following hyperparameters were used during training:
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
-
| No log | 1.0 | 1 | 0.
|
54 |
-
| No log | 2.0 | 2 | 0.
|
55 |
-
| No log | 3.0 | 3 | 0.
|
56 |
-
| No log | 4.0 | 4 | 0.
|
57 |
-
| No log | 5.0 | 5 | 0.
|
58 |
-
| No log | 6.0 | 6 | 0.
|
59 |
-
| No log | 7.0 | 7 | 0.
|
60 |
-
| No log | 8.0 | 8 | 0.
|
61 |
-
| No log | 9.0 | 9 | 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
105 |
-
| 0.
|
106 |
-
| 0.
|
107 |
-
| 0.
|
108 |
-
| 0.
|
109 |
-
| 0.
|
110 |
-
| 0.
|
111 |
-
| 0.
|
112 |
-
| 0.
|
113 |
-
| 0.
|
114 |
-
| 0.
|
115 |
-
| 0.
|
116 |
-
| 0.
|
117 |
-
| 0.
|
118 |
-
| 0.
|
119 |
-
| 0.
|
120 |
-
| 0.
|
121 |
-
| 0.
|
122 |
-
| 0.
|
123 |
-
| 0.
|
124 |
-
| 0.
|
125 |
-
| 0.
|
126 |
-
| 0.
|
127 |
-
| 0.
|
128 |
-
| 0.
|
129 |
-
| 0.
|
130 |
-
| 0.
|
131 |
-
| 0.
|
132 |
-
| 0.
|
133 |
-
| 0.
|
134 |
-
| 0.
|
135 |
-
| 0.
|
136 |
-
| 0.
|
137 |
-
| 0.
|
138 |
-
| 0.
|
139 |
-
| 0.
|
140 |
-
| 0.
|
141 |
-
| 0.
|
142 |
-
| 0.0028 | 90.0 | 90 | 0.
|
143 |
-
| 0.0028 | 91.0 | 91 | 0.
|
144 |
-
| 0.0028 | 92.0 | 92 | 0.
|
145 |
-
| 0.0028 | 93.0 | 93 | 0.
|
146 |
-
| 0.0028 | 94.0 | 94 | 0.
|
147 |
-
| 0.0028 | 95.0 | 95 | 0.
|
148 |
-
| 0.0028 | 96.0 | 96 | 0.
|
149 |
-
| 0.0028 | 97.0 | 97 | 0.
|
150 |
-
| 0.0028 | 98.0 | 98 | 0.
|
151 |
-
| 0.0028 | 99.0 | 99 | 0.
|
152 |
-
| 0.
|
153 |
-
| 0.
|
154 |
-
| 0.
|
155 |
-
| 0.
|
156 |
-
| 0.
|
157 |
-
| 0.
|
158 |
-
| 0.
|
159 |
-
| 0.
|
160 |
-
| 0.
|
161 |
-
| 0.
|
162 |
-
| 0.
|
163 |
-
| 0.
|
164 |
-
| 0.
|
165 |
-
| 0.
|
166 |
-
| 0.
|
167 |
-
| 0.
|
168 |
-
| 0.
|
169 |
-
| 0.
|
170 |
-
| 0.
|
171 |
-
| 0.
|
172 |
-
| 0.
|
173 |
-
| 0.
|
174 |
-
| 0.
|
175 |
-
| 0.
|
176 |
-
| 0.
|
177 |
-
| 0.
|
178 |
-
| 0.
|
179 |
-
| 0.
|
180 |
-
| 0.
|
181 |
-
| 0.
|
182 |
-
| 0.0013 | 130.0 | 130 | 0.
|
183 |
-
| 0.0013 | 131.0 | 131 | 0.
|
184 |
-
| 0.0013 | 132.0 | 132 | 0.
|
185 |
-
| 0.0013 | 133.0 | 133 | 0.
|
186 |
-
| 0.0013 | 134.0 | 134 | 0.
|
187 |
-
| 0.0013 | 135.0 | 135 | 0.
|
188 |
-
| 0.0013 | 136.0 | 136 | 0.
|
189 |
-
| 0.0013 | 137.0 | 137 | 0.
|
190 |
-
| 0.0013 | 138.0 | 138 | 0.
|
191 |
-
| 0.0013 | 139.0 | 139 | 0.
|
192 |
-
| 0.
|
193 |
-
| 0.
|
194 |
-
| 0.
|
195 |
-
| 0.
|
196 |
-
| 0.
|
197 |
-
| 0.
|
198 |
-
| 0.
|
199 |
-
| 0.
|
200 |
-
| 0.
|
201 |
-
| 0.
|
202 |
-
| 0.001 | 150.0 | 150 | 0.
|
203 |
|
204 |
|
205 |
### Framework versions
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: albert-base-v2
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
metrics:
|
|
|
15 |
|
16 |
# best_model-yelp_polarity-16-42
|
17 |
|
18 |
+
This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6276
|
21 |
+
- Accuracy: 0.8125
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 1 | 0.7035 | 0.8438 |
|
54 |
+
| No log | 2.0 | 2 | 0.7063 | 0.8438 |
|
55 |
+
| No log | 3.0 | 3 | 0.7119 | 0.8438 |
|
56 |
+
| No log | 4.0 | 4 | 0.7198 | 0.8438 |
|
57 |
+
| No log | 5.0 | 5 | 0.7298 | 0.8125 |
|
58 |
+
| No log | 6.0 | 6 | 0.7415 | 0.8125 |
|
59 |
+
| No log | 7.0 | 7 | 0.7542 | 0.8125 |
|
60 |
+
| No log | 8.0 | 8 | 0.7678 | 0.8125 |
|
61 |
+
| No log | 9.0 | 9 | 0.7815 | 0.8125 |
|
62 |
+
| 0.4002 | 10.0 | 10 | 0.7947 | 0.8125 |
|
63 |
+
| 0.4002 | 11.0 | 11 | 0.8066 | 0.8125 |
|
64 |
+
| 0.4002 | 12.0 | 12 | 0.8164 | 0.8125 |
|
65 |
+
| 0.4002 | 13.0 | 13 | 0.8228 | 0.8125 |
|
66 |
+
| 0.4002 | 14.0 | 14 | 0.8259 | 0.8125 |
|
67 |
+
| 0.4002 | 15.0 | 15 | 0.8260 | 0.8125 |
|
68 |
+
| 0.4002 | 16.0 | 16 | 0.8231 | 0.8125 |
|
69 |
+
| 0.4002 | 17.0 | 17 | 0.8172 | 0.8125 |
|
70 |
+
| 0.4002 | 18.0 | 18 | 0.8084 | 0.8125 |
|
71 |
+
| 0.4002 | 19.0 | 19 | 0.7968 | 0.8125 |
|
72 |
+
| 0.3498 | 20.0 | 20 | 0.7826 | 0.8125 |
|
73 |
+
| 0.3498 | 21.0 | 21 | 0.7660 | 0.8125 |
|
74 |
+
| 0.3498 | 22.0 | 22 | 0.7474 | 0.8438 |
|
75 |
+
| 0.3498 | 23.0 | 23 | 0.7272 | 0.8438 |
|
76 |
+
| 0.3498 | 24.0 | 24 | 0.7053 | 0.8438 |
|
77 |
+
| 0.3498 | 25.0 | 25 | 0.6813 | 0.8438 |
|
78 |
+
| 0.3498 | 26.0 | 26 | 0.6547 | 0.8438 |
|
79 |
+
| 0.3498 | 27.0 | 27 | 0.6255 | 0.8438 |
|
80 |
+
| 0.3498 | 28.0 | 28 | 0.5952 | 0.8438 |
|
81 |
+
| 0.3498 | 29.0 | 29 | 0.5656 | 0.8125 |
|
82 |
+
| 0.2773 | 30.0 | 30 | 0.5407 | 0.8125 |
|
83 |
+
| 0.2773 | 31.0 | 31 | 0.5221 | 0.8125 |
|
84 |
+
| 0.2773 | 32.0 | 32 | 0.5096 | 0.8125 |
|
85 |
+
| 0.2773 | 33.0 | 33 | 0.5026 | 0.8125 |
|
86 |
+
| 0.2773 | 34.0 | 34 | 0.5080 | 0.8125 |
|
87 |
+
| 0.2773 | 35.0 | 35 | 0.5248 | 0.8125 |
|
88 |
+
| 0.2773 | 36.0 | 36 | 0.5517 | 0.8125 |
|
89 |
+
| 0.2773 | 37.0 | 37 | 0.5838 | 0.8125 |
|
90 |
+
| 0.2773 | 38.0 | 38 | 0.6122 | 0.8125 |
|
91 |
+
| 0.2773 | 39.0 | 39 | 0.6332 | 0.8125 |
|
92 |
+
| 0.1446 | 40.0 | 40 | 0.6455 | 0.8125 |
|
93 |
+
| 0.1446 | 41.0 | 41 | 0.6491 | 0.8125 |
|
94 |
+
| 0.1446 | 42.0 | 42 | 0.6449 | 0.8125 |
|
95 |
+
| 0.1446 | 43.0 | 43 | 0.6330 | 0.8125 |
|
96 |
+
| 0.1446 | 44.0 | 44 | 0.6121 | 0.8125 |
|
97 |
+
| 0.1446 | 45.0 | 45 | 0.5814 | 0.8125 |
|
98 |
+
| 0.1446 | 46.0 | 46 | 0.5390 | 0.8125 |
|
99 |
+
| 0.1446 | 47.0 | 47 | 0.4913 | 0.8125 |
|
100 |
+
| 0.1446 | 48.0 | 48 | 0.4598 | 0.8125 |
|
101 |
+
| 0.1446 | 49.0 | 49 | 0.4469 | 0.8438 |
|
102 |
+
| 0.066 | 50.0 | 50 | 0.4535 | 0.8438 |
|
103 |
+
| 0.066 | 51.0 | 51 | 0.4775 | 0.8125 |
|
104 |
+
| 0.066 | 52.0 | 52 | 0.5153 | 0.8125 |
|
105 |
+
| 0.066 | 53.0 | 53 | 0.5618 | 0.8125 |
|
106 |
+
| 0.066 | 54.0 | 54 | 0.6090 | 0.8125 |
|
107 |
+
| 0.066 | 55.0 | 55 | 0.6490 | 0.8125 |
|
108 |
+
| 0.066 | 56.0 | 56 | 0.6785 | 0.8125 |
|
109 |
+
| 0.066 | 57.0 | 57 | 0.6962 | 0.8125 |
|
110 |
+
| 0.066 | 58.0 | 58 | 0.7045 | 0.8125 |
|
111 |
+
| 0.066 | 59.0 | 59 | 0.7056 | 0.8125 |
|
112 |
+
| 0.0171 | 60.0 | 60 | 0.7001 | 0.8125 |
|
113 |
+
| 0.0171 | 61.0 | 61 | 0.6878 | 0.8125 |
|
114 |
+
| 0.0171 | 62.0 | 62 | 0.6688 | 0.8125 |
|
115 |
+
| 0.0171 | 63.0 | 63 | 0.6427 | 0.8125 |
|
116 |
+
| 0.0171 | 64.0 | 64 | 0.6110 | 0.8125 |
|
117 |
+
| 0.0171 | 65.0 | 65 | 0.5764 | 0.8125 |
|
118 |
+
| 0.0171 | 66.0 | 66 | 0.5422 | 0.8125 |
|
119 |
+
| 0.0171 | 67.0 | 67 | 0.5147 | 0.8125 |
|
120 |
+
| 0.0171 | 68.0 | 68 | 0.4976 | 0.8125 |
|
121 |
+
| 0.0171 | 69.0 | 69 | 0.4883 | 0.8125 |
|
122 |
+
| 0.0058 | 70.0 | 70 | 0.4876 | 0.8438 |
|
123 |
+
| 0.0058 | 71.0 | 71 | 0.4932 | 0.8438 |
|
124 |
+
| 0.0058 | 72.0 | 72 | 0.5018 | 0.8438 |
|
125 |
+
| 0.0058 | 73.0 | 73 | 0.5127 | 0.8125 |
|
126 |
+
| 0.0058 | 74.0 | 74 | 0.5251 | 0.8125 |
|
127 |
+
| 0.0058 | 75.0 | 75 | 0.5385 | 0.8125 |
|
128 |
+
| 0.0058 | 76.0 | 76 | 0.5517 | 0.8125 |
|
129 |
+
| 0.0058 | 77.0 | 77 | 0.5644 | 0.8125 |
|
130 |
+
| 0.0058 | 78.0 | 78 | 0.5758 | 0.8125 |
|
131 |
+
| 0.0058 | 79.0 | 79 | 0.5858 | 0.8125 |
|
132 |
+
| 0.0037 | 80.0 | 80 | 0.5941 | 0.8125 |
|
133 |
+
| 0.0037 | 81.0 | 81 | 0.6009 | 0.8125 |
|
134 |
+
| 0.0037 | 82.0 | 82 | 0.6064 | 0.8125 |
|
135 |
+
| 0.0037 | 83.0 | 83 | 0.6102 | 0.8125 |
|
136 |
+
| 0.0037 | 84.0 | 84 | 0.6119 | 0.8125 |
|
137 |
+
| 0.0037 | 85.0 | 85 | 0.6123 | 0.8125 |
|
138 |
+
| 0.0037 | 86.0 | 86 | 0.6108 | 0.8125 |
|
139 |
+
| 0.0037 | 87.0 | 87 | 0.6081 | 0.8125 |
|
140 |
+
| 0.0037 | 88.0 | 88 | 0.6040 | 0.8125 |
|
141 |
+
| 0.0037 | 89.0 | 89 | 0.5987 | 0.8125 |
|
142 |
+
| 0.0028 | 90.0 | 90 | 0.5923 | 0.8125 |
|
143 |
+
| 0.0028 | 91.0 | 91 | 0.5853 | 0.8125 |
|
144 |
+
| 0.0028 | 92.0 | 92 | 0.5779 | 0.8125 |
|
145 |
+
| 0.0028 | 93.0 | 93 | 0.5703 | 0.8125 |
|
146 |
+
| 0.0028 | 94.0 | 94 | 0.5627 | 0.8125 |
|
147 |
+
| 0.0028 | 95.0 | 95 | 0.5552 | 0.8125 |
|
148 |
+
| 0.0028 | 96.0 | 96 | 0.5481 | 0.8438 |
|
149 |
+
| 0.0028 | 97.0 | 97 | 0.5417 | 0.8438 |
|
150 |
+
| 0.0028 | 98.0 | 98 | 0.5365 | 0.8438 |
|
151 |
+
| 0.0028 | 99.0 | 99 | 0.5318 | 0.8438 |
|
152 |
+
| 0.0023 | 100.0 | 100 | 0.5280 | 0.8438 |
|
153 |
+
| 0.0023 | 101.0 | 101 | 0.5249 | 0.8438 |
|
154 |
+
| 0.0023 | 102.0 | 102 | 0.5220 | 0.8438 |
|
155 |
+
| 0.0023 | 103.0 | 103 | 0.5198 | 0.8438 |
|
156 |
+
| 0.0023 | 104.0 | 104 | 0.5180 | 0.8438 |
|
157 |
+
| 0.0023 | 105.0 | 105 | 0.5169 | 0.8438 |
|
158 |
+
| 0.0023 | 106.0 | 106 | 0.5167 | 0.8438 |
|
159 |
+
| 0.0023 | 107.0 | 107 | 0.5172 | 0.8438 |
|
160 |
+
| 0.0023 | 108.0 | 108 | 0.5184 | 0.8438 |
|
161 |
+
| 0.0023 | 109.0 | 109 | 0.5203 | 0.8438 |
|
162 |
+
| 0.0019 | 110.0 | 110 | 0.5224 | 0.8438 |
|
163 |
+
| 0.0019 | 111.0 | 111 | 0.5249 | 0.8438 |
|
164 |
+
| 0.0019 | 112.0 | 112 | 0.5278 | 0.8438 |
|
165 |
+
| 0.0019 | 113.0 | 113 | 0.5309 | 0.8438 |
|
166 |
+
| 0.0019 | 114.0 | 114 | 0.5343 | 0.8438 |
|
167 |
+
| 0.0019 | 115.0 | 115 | 0.5381 | 0.8438 |
|
168 |
+
| 0.0019 | 116.0 | 116 | 0.5422 | 0.8438 |
|
169 |
+
| 0.0019 | 117.0 | 117 | 0.5467 | 0.8438 |
|
170 |
+
| 0.0019 | 118.0 | 118 | 0.5514 | 0.8125 |
|
171 |
+
| 0.0019 | 119.0 | 119 | 0.5561 | 0.8125 |
|
172 |
+
| 0.0016 | 120.0 | 120 | 0.5609 | 0.8125 |
|
173 |
+
| 0.0016 | 121.0 | 121 | 0.5655 | 0.8125 |
|
174 |
+
| 0.0016 | 122.0 | 122 | 0.5703 | 0.8125 |
|
175 |
+
| 0.0016 | 123.0 | 123 | 0.5750 | 0.8125 |
|
176 |
+
| 0.0016 | 124.0 | 124 | 0.5796 | 0.8125 |
|
177 |
+
| 0.0016 | 125.0 | 125 | 0.5838 | 0.8125 |
|
178 |
+
| 0.0016 | 126.0 | 126 | 0.5877 | 0.8125 |
|
179 |
+
| 0.0016 | 127.0 | 127 | 0.5915 | 0.8125 |
|
180 |
+
| 0.0016 | 128.0 | 128 | 0.5950 | 0.8125 |
|
181 |
+
| 0.0016 | 129.0 | 129 | 0.5978 | 0.8125 |
|
182 |
+
| 0.0013 | 130.0 | 130 | 0.6002 | 0.8125 |
|
183 |
+
| 0.0013 | 131.0 | 131 | 0.6024 | 0.8125 |
|
184 |
+
| 0.0013 | 132.0 | 132 | 0.6045 | 0.8125 |
|
185 |
+
| 0.0013 | 133.0 | 133 | 0.6065 | 0.8125 |
|
186 |
+
| 0.0013 | 134.0 | 134 | 0.6082 | 0.8125 |
|
187 |
+
| 0.0013 | 135.0 | 135 | 0.6097 | 0.8125 |
|
188 |
+
| 0.0013 | 136.0 | 136 | 0.6113 | 0.8125 |
|
189 |
+
| 0.0013 | 137.0 | 137 | 0.6125 | 0.8125 |
|
190 |
+
| 0.0013 | 138.0 | 138 | 0.6136 | 0.8125 |
|
191 |
+
| 0.0013 | 139.0 | 139 | 0.6148 | 0.8125 |
|
192 |
+
| 0.0012 | 140.0 | 140 | 0.6158 | 0.8125 |
|
193 |
+
| 0.0012 | 141.0 | 141 | 0.6165 | 0.8125 |
|
194 |
+
| 0.0012 | 142.0 | 142 | 0.6172 | 0.8125 |
|
195 |
+
| 0.0012 | 143.0 | 143 | 0.6180 | 0.8125 |
|
196 |
+
| 0.0012 | 144.0 | 144 | 0.6190 | 0.8125 |
|
197 |
+
| 0.0012 | 145.0 | 145 | 0.6201 | 0.8125 |
|
198 |
+
| 0.0012 | 146.0 | 146 | 0.6215 | 0.8125 |
|
199 |
+
| 0.0012 | 147.0 | 147 | 0.6227 | 0.8125 |
|
200 |
+
| 0.0012 | 148.0 | 148 | 0.6239 | 0.8125 |
|
201 |
+
| 0.0012 | 149.0 | 149 | 0.6256 | 0.8125 |
|
202 |
+
| 0.001 | 150.0 | 150 | 0.6276 | 0.8125 |
|
203 |
|
204 |
|
205 |
### Framework versions
|