simpleParadox commited on
Commit
0934e39
·
verified ·
1 Parent(s): 11ee4d3

Upload 10 files

Browse files
config.json ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "babylm/git-2024",
3
+ "architectures": [
4
+ "GitForCausalLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_git.GitConfig",
9
+ "AutoModelForCausalLM": "modeling_git.GitForCausalLM",
10
+ "AutoModelForSequenceClassification": "modeling_git.GitForSequenceClassification"
11
+ },
12
+ "bos_token_id": 101,
13
+ "classifier_dropout": null,
14
+ "eos_token_id": 102,
15
+ "hidden_act": "gelu",
16
+ "hidden_dropout_prob": 0.1,
17
+ "hidden_size": 768,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "layer_norm_eps": 1e-12,
21
+ "manual_seed": 0,
22
+ "max_position_embeddings": 1024,
23
+ "model_type": "git",
24
+ "num_attention_heads": 12,
25
+ "num_hidden_layers": 12,
26
+ "num_image_with_embedding": null,
27
+ "pad_token_id": 0,
28
+ "position_embedding_type": "absolute",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.38.2",
31
+ "use_cache": true,
32
+ "vision_config": {
33
+ "dropout": 0.0,
34
+ "initializer_factor": 1.0,
35
+ "intermediate_size": 4096,
36
+ "model_type": "git_vision_model",
37
+ "num_attention_heads": 16,
38
+ "num_hidden_layers": 24,
39
+ "patch_size": 14,
40
+ "projection_dim": 512
41
+ },
42
+ "vocab_size": 32778
43
+ }
configuration_git.py ADDED
@@ -0,0 +1,164 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import os
17
+ from typing import Union
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ import transformers.models.git.configuration_git as configuration_git
21
+
22
+
23
+ GIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json",
25
+ }
26
+
27
+
28
+ class GitVisionConfig(configuration_git.GitVisionConfig, dict):
29
+ def __init__(self, *args, **kwargs):
30
+ configuration_git.GitVisionConfig.__init__(
31
+ self, *args, **kwargs)
32
+ dict.__init__(self, **self.__dict__)
33
+
34
+ def toJSON(self):
35
+ return json.dumps(
36
+ self,
37
+ default=lambda o: o.__dict__,
38
+ sort_keys=True,
39
+ indent=4)
40
+
41
+
42
+ class GitConfig(PretrainedConfig, dict):
43
+ r"""
44
+ This is the configuration class to store the configuration of a [`GitModel`]. It is used to instantiate a GIT model
45
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
46
+ defaults will yield a similar configuration to that of the GIT
47
+ [microsoft/git-base](https://huggingface.co/microsoft/git-base) architecture.
48
+
49
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
50
+ documentation from [`PretrainedConfig`] for more information.
51
+
52
+ Args:
53
+ vision_config (`dict`, *optional*):
54
+ Dictionary of configuration options used to initialize [`GitVisionConfig`].
55
+ vocab_size (`int`, *optional*, defaults to 30522):
56
+ Vocabulary size of the GIT model. Defines the number of different tokens that can be represented by the
57
+ `inputs_ids` passed when calling [`GitModel`].
58
+ hidden_size (`int`, *optional*, defaults to 768):
59
+ Dimensionality of the encoder layers and the pooler layer.
60
+ num_hidden_layers (`int`, *optional*, defaults to 6):
61
+ Number of hidden layers in the Transformer encoder.
62
+ num_attention_heads (`int`, *optional*, defaults to 12):
63
+ Number of attention heads for each attention layer in the Transformer encoder.
64
+ intermediate_size (`int`, *optional*, defaults to 3072):
65
+ Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
66
+ hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
67
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
68
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
69
+ hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
70
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
71
+ attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
72
+ The dropout ratio for the attention probabilities.
73
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
74
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
75
+ just in case (e.g., 512 or 1024 or 2048).
76
+ initializer_range (`float`, *optional*, defaults to 0.02):
77
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
78
+ layer_norm_eps (`float`, *optional*, defaults to 1e-12):
79
+ The epsilon used by the layer normalization layers.
80
+ position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
81
+ Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
82
+ positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
83
+ [Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
84
+ For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
85
+ with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
86
+ use_cache (`bool`, *optional*, defaults to `True`):
87
+ Whether or not the model should return the last key/values attentions (not used by all models).
88
+ num_image_with_embedding (`int`, *optional*):
89
+ The number of temporal embeddings to add, in case the model is used for video captioning/VQA.
90
+
91
+ Examples:
92
+
93
+ ```python
94
+ >>> from transformers import GitConfig, GitModel
95
+
96
+ >>> # Initializing a GIT microsoft/git-base style configuration
97
+ >>> configuration = GitConfig()
98
+
99
+ >>> # Initializing a model (with random weights) from the microsoft/git-base style configuration
100
+ >>> model = GitModel(configuration)
101
+
102
+ >>> # Accessing the model configuration
103
+ >>> configuration = model.config
104
+ ```"""
105
+
106
+ model_type = "git"
107
+
108
+ def __init__(
109
+ self,
110
+ vision_config=None,
111
+ vocab_size=32778,
112
+ hidden_size=768,
113
+ num_hidden_layers=6,
114
+ num_attention_heads=12,
115
+ intermediate_size=3072,
116
+ hidden_act="gelu",
117
+ hidden_dropout_prob=0.1,
118
+ attention_probs_dropout_prob=0.1,
119
+ max_position_embeddings=1024,
120
+ initializer_range=0.02,
121
+ layer_norm_eps=1e-12,
122
+ pad_token_id=0,
123
+ position_embedding_type="absolute",
124
+ use_cache=True,
125
+ tie_word_embeddings=True,
126
+ bos_token_id=101,
127
+ eos_token_id=102,
128
+ num_image_with_embedding=None,
129
+ **kwargs,
130
+ ):
131
+ PretrainedConfig.__init__(
132
+ self,
133
+ bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
134
+
135
+ if vision_config is None:
136
+ vision_config = {}
137
+ self.vision_config = GitVisionConfig(**vision_config)
138
+ self.vocab_size = vocab_size
139
+ self.hidden_size = hidden_size
140
+ self.num_hidden_layers = num_hidden_layers
141
+ self.num_attention_heads = num_attention_heads
142
+ self.hidden_act = hidden_act
143
+ self.intermediate_size = intermediate_size
144
+ self.hidden_dropout_prob = hidden_dropout_prob
145
+ self.attention_probs_dropout_prob = attention_probs_dropout_prob
146
+ self.max_position_embeddings = max_position_embeddings
147
+ self.initializer_range = initializer_range
148
+ self.layer_norm_eps = layer_norm_eps
149
+ self.position_embedding_type = position_embedding_type
150
+ self.use_cache = use_cache
151
+ self.tie_word_embeddings = tie_word_embeddings
152
+ self.num_image_with_embedding = num_image_with_embedding
153
+
154
+ self.bos_token_id = bos_token_id
155
+ self.eos_token_id = eos_token_id
156
+
157
+ dict.__init__(self, **self.__dict__)
158
+
159
+ def toJSON(self):
160
+ return json.dumps(
161
+ self,
162
+ default=lambda o: o.__dict__,
163
+ sort_keys=True,
164
+ indent=4)
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 101,
4
+ "eos_token_id": 102,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.38.2"
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9aa0781f89d7ce8a6568d7f330fdcbb0985517ef5ebc3e0a1465afd6e5450342
3
+ size 792038744
modeling_git.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import transformers
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
3
+ from transformers import ViTFeatureExtractor, ViTModel, ViTConfig
4
+ from typing import List, Optional, Tuple, Union
5
+ import warnings
6
+ import ipdb
7
+ import os
8
+ import torch
9
+ from torch import nn
10
+ from torch.nn import CrossEntropyLoss, BCEWithLogitsLoss, MSELoss
11
+ from itertools import product
12
+ import numpy as np
13
+ import transformers.models.git.modeling_git as modeling_git
14
+ import transformers.models.vit.modeling_vit as modeling_vit
15
+ from transformers.models.opt.modeling_opt import OPTConfig
16
+ import transformers.models.opt.modeling_opt as hg_opt
17
+ import transformers.models.clip.modeling_clip as modeling_clip
18
+ from transformers.modeling_outputs import SequenceClassifierOutputWithPast
19
+
20
+ from .configuration_git import GitConfig
21
+
22
+ import random
23
+
24
+
25
+ class GitForCausalLM(modeling_git.GitForCausalLM):
26
+ config_class = GitConfig
27
+
28
+ def __init__(self, *args, **kwargs):
29
+ super().__init__(*args, **kwargs)
30
+
31
+ torch.backends.cudnn.deterministic = True
32
+ torch.backends.cudnn.benchmark = True
33
+ torch.use_deterministic_algorithms(True)
34
+ torch.backends.cuda.matmul.allow_tf32 = True
35
+ torch.backends.cudnn.allow_tf32 = True
36
+
37
+ random.seed(0)
38
+ np.random.seed(0)
39
+ torch.manual_seed(0)
40
+ torch.cuda.manual_seed_all(0)
41
+
42
+
43
+ del self.output
44
+ self.output = nn.Linear(
45
+ self.config.hidden_size,
46
+ self.config.vocab_size,
47
+ bias=False)
48
+ self.post_init()
49
+
50
+ del self.git.image_encoder
51
+ self.git.image_encoder = ViTModel.from_pretrained('facebook/dino-vitb16')
52
+ dino_cfg = self.git.image_encoder.config
53
+ config = self.git.config
54
+ config.vision_config.hidden_size = dino_cfg.hidden_size
55
+
56
+ del self.git.visual_projection
57
+ self.git.visual_projection = modeling_git.GitProjection(config)
58
+ num_tks = (dino_cfg.image_size // dino_cfg.patch_size) ** 2 + 1
59
+ self.git.encoder.layer[0].attention.self.image_patch_tokens = num_tks
60
+
61
+ def forward(
62
+ self,
63
+ input_ids: Optional[torch.Tensor] = None,
64
+ attention_mask: Optional[torch.Tensor] = None,
65
+ position_ids: Optional[torch.Tensor] = None,
66
+ pixel_values: Optional[torch.Tensor] = None,
67
+ head_mask: Optional[torch.Tensor] = None,
68
+ inputs_embeds: Optional[torch.Tensor] = None,
69
+ labels: Optional[torch.Tensor] = None,
70
+ past_key_values: Optional[List[torch.Tensor]] = None,
71
+ use_cache: Optional[bool] = None,
72
+ output_attentions: Optional[bool] = None,
73
+ output_hidden_states: Optional[bool] = None,
74
+ return_dict: Optional[bool] = None,
75
+ ) -> Union[Tuple[torch.Tensor], modeling_git.CausalLMOutputWithPast]:
76
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
77
+ if labels is not None:
78
+ use_cache = False
79
+
80
+ outputs = self.git(
81
+ input_ids,
82
+ attention_mask=attention_mask,
83
+ position_ids=position_ids,
84
+ pixel_values=pixel_values,
85
+ head_mask=head_mask,
86
+ inputs_embeds=inputs_embeds,
87
+ past_key_values=past_key_values,
88
+ use_cache=use_cache,
89
+ output_attentions=output_attentions,
90
+ output_hidden_states=output_hidden_states,
91
+ return_dict=return_dict,
92
+ )
93
+
94
+ sequence_output = outputs[0]
95
+ logits = self.output(sequence_output)
96
+
97
+ loss = None
98
+ if labels is not None:
99
+ # we are doing next-token prediction; shift prediction scores and input ids by one
100
+ if pixel_values is not None:
101
+ num_image_tokens = self.git.encoder.layer[0].attention.self.image_patch_tokens
102
+ else:
103
+ num_image_tokens = 0
104
+ shifted_logits = logits[:, num_image_tokens:-1, :].contiguous()
105
+ labels = labels[:, 1:].contiguous()
106
+ loss_fct = CrossEntropyLoss()
107
+ loss = loss_fct(shifted_logits.view(-1, self.config.vocab_size), labels.view(-1))
108
+
109
+ if not return_dict:
110
+ output = (logits,) + outputs[1:]
111
+ return ((loss,) + output) if loss is not None else output
112
+
113
+ return modeling_git.CausalLMOutputWithPast(
114
+ loss=loss,
115
+ logits=logits,
116
+ past_key_values=outputs.past_key_values,
117
+ hidden_states=outputs.hidden_states,
118
+ attentions=outputs.attentions,
119
+ )
120
+
121
+
122
+ class GitForSequenceClassification(modeling_git.GitPreTrainedModel):
123
+ def __init__(self, *args, **kwargs):
124
+ super().__init__(*args, **kwargs)
125
+ self.num_labels = self.config.num_labels
126
+
127
+ torch.backends.cudnn.deterministic = True
128
+ torch.backends.cudnn.benchmark = True
129
+ torch.use_deterministic_algorithms(True)
130
+ torch.backends.cuda.matmul.allow_tf32 = True
131
+ torch.backends.cudnn.allow_tf32 = True
132
+
133
+ random.seed(0)
134
+ np.random.seed(0)
135
+ torch.manual_seed(0)
136
+ torch.cuda.manual_seed_all(0)
137
+
138
+ self.classifier = nn.Linear(
139
+ self.config.hidden_size,
140
+ self.config.num_labels,
141
+ bias=False)
142
+ self.post_init()
143
+ self.git = modeling_git.GitModel(self.config)
144
+
145
+ del self.git.image_encoder
146
+ self.git.image_encoder = ViTModel.from_pretrained('facebook/dino-vitb16')
147
+ dino_cfg = self.git.image_encoder.config
148
+ config = self.git.config
149
+ config.vision_config.hidden_size = dino_cfg.hidden_size
150
+
151
+ del self.git.visual_projection
152
+ self.git.visual_projection = modeling_git.GitProjection(config)
153
+ num_tks = (dino_cfg.image_size // dino_cfg.patch_size) ** 2 + 1
154
+ self.git.encoder.layer[0].attention.self.image_patch_tokens = num_tks
155
+
156
+ def forward(
157
+ self,
158
+ input_ids: Optional[torch.LongTensor] = None,
159
+ attention_mask: Optional[torch.FloatTensor] = None,
160
+ position_ids: Optional[torch.Tensor] = None,
161
+ pixel_values: Optional[torch.Tensor] = None,
162
+ head_mask: Optional[torch.FloatTensor] = None,
163
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
164
+ inputs_embeds: Optional[torch.FloatTensor] = None,
165
+ labels: Optional[torch.LongTensor] = None,
166
+ use_cache: Optional[bool] = None,
167
+ output_attentions: Optional[bool] = None,
168
+ output_hidden_states: Optional[bool] = None,
169
+ return_dict: Optional[bool] = None,
170
+ *args, **kwargs) -> Union[Tuple, SequenceClassifierOutputWithPast]:
171
+ r"""
172
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
173
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
174
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
175
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
176
+ """
177
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
178
+
179
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
180
+ outputs = self.git(
181
+ input_ids,
182
+ attention_mask=attention_mask,
183
+ position_ids=position_ids,
184
+ pixel_values=pixel_values,
185
+ head_mask=head_mask,
186
+ inputs_embeds=inputs_embeds,
187
+ past_key_values=past_key_values,
188
+ use_cache=use_cache,
189
+ output_attentions=output_attentions,
190
+ output_hidden_states=output_hidden_states,
191
+ return_dict=return_dict,
192
+ *args, **kwargs)
193
+
194
+ hidden_states = outputs[0]
195
+ logits = self.classifier(hidden_states)
196
+
197
+ if input_ids is not None:
198
+ batch_size, sequence_length = input_ids.shape[:2]
199
+ else:
200
+ batch_size, sequence_length = inputs_embeds.shape[:2]
201
+
202
+ if self.config.pad_token_id is None:
203
+ sequence_lengths = -1
204
+ else:
205
+ if input_ids is not None:
206
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
207
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
208
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
209
+ sequence_lengths = sequence_lengths.to(logits.device)
210
+ else:
211
+ sequence_lengths = -1
212
+ # logger.warning(
213
+ # f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
214
+ # "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
215
+ # )
216
+
217
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
218
+
219
+ loss = None
220
+ if labels is not None:
221
+ if self.config.problem_type is None:
222
+ if self.num_labels == 1:
223
+ self.config.problem_type = "regression"
224
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
225
+ self.config.problem_type = "single_label_classification"
226
+ else:
227
+ self.config.problem_type = "multi_label_classification"
228
+
229
+ if self.config.problem_type == "regression":
230
+ loss_fct = MSELoss()
231
+ if self.num_labels == 1:
232
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
233
+ else:
234
+ loss = loss_fct(pooled_logits, labels)
235
+ elif self.config.problem_type == "single_label_classification":
236
+ loss_fct = CrossEntropyLoss()
237
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
238
+ elif self.config.problem_type == "multi_label_classification":
239
+ loss_fct = BCEWithLogitsLoss()
240
+ loss = loss_fct(pooled_logits, labels)
241
+
242
+ if not return_dict:
243
+ output = (pooled_logits,) + outputs[1:]
244
+ return ((loss,) + output) if loss is not None else output
245
+
246
+ return SequenceClassifierOutputWithPast(
247
+ loss=loss,
248
+ logits=pooled_logits,
249
+ past_key_values=outputs.past_key_values,
250
+ hidden_states=outputs.hidden_states,
251
+ attentions=outputs.attentions,
252
+ )
preprocessor_config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "feature_extractor_type": "ViTFeatureExtractor",
6
+ "image_mean": [
7
+ 0.485,
8
+ 0.456,
9
+ 0.406
10
+ ],
11
+ "image_processor_type": "ViTFeatureExtractor",
12
+ "image_std": [
13
+ 0.229,
14
+ 0.224,
15
+ 0.225
16
+ ],
17
+ "resample": 2,
18
+ "rescale_factor": 0.00392156862745098,
19
+ "size": {
20
+ "height": 224,
21
+ "width": 224
22
+ }
23
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "model_input_names": [
49
+ "input_ids",
50
+ "attention_mask"
51
+ ],
52
+ "model_max_length": 512,
53
+ "pad_token": "[PAD]",
54
+ "processor_class": "GitProcessor",
55
+ "sep_token": "[SEP]",
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "unk_token": "[UNK]"
60
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff