Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- zh
|
5 |
+
- de
|
6 |
+
- es
|
7 |
+
- ru
|
8 |
+
- ko
|
9 |
+
- fr
|
10 |
+
- ja
|
11 |
+
- pt
|
12 |
+
- tr
|
13 |
+
- pl
|
14 |
+
- ca
|
15 |
+
- nl
|
16 |
+
- ar
|
17 |
+
- sv
|
18 |
+
- it
|
19 |
+
- id
|
20 |
+
- hi
|
21 |
+
- fi
|
22 |
+
- vi
|
23 |
+
- he
|
24 |
+
- uk
|
25 |
+
- el
|
26 |
+
- ms
|
27 |
+
- cs
|
28 |
+
- ro
|
29 |
+
- da
|
30 |
+
- hu
|
31 |
+
- ta
|
32 |
+
- 'no'
|
33 |
+
- th
|
34 |
+
- ur
|
35 |
+
- hr
|
36 |
+
- bg
|
37 |
+
- lt
|
38 |
+
- la
|
39 |
+
- mi
|
40 |
+
- ml
|
41 |
+
- cy
|
42 |
+
- sk
|
43 |
+
- te
|
44 |
+
- fa
|
45 |
+
- lv
|
46 |
+
- bn
|
47 |
+
- sr
|
48 |
+
- az
|
49 |
+
- sl
|
50 |
+
- kn
|
51 |
+
- et
|
52 |
+
- mk
|
53 |
+
- br
|
54 |
+
- eu
|
55 |
+
- is
|
56 |
+
- hy
|
57 |
+
- ne
|
58 |
+
- mn
|
59 |
+
- bs
|
60 |
+
- kk
|
61 |
+
- sq
|
62 |
+
- sw
|
63 |
+
- gl
|
64 |
+
- mr
|
65 |
+
- pa
|
66 |
+
- si
|
67 |
+
- km
|
68 |
+
- sn
|
69 |
+
- yo
|
70 |
+
- so
|
71 |
+
- af
|
72 |
+
- oc
|
73 |
+
- ka
|
74 |
+
- be
|
75 |
+
- tg
|
76 |
+
- sd
|
77 |
+
- gu
|
78 |
+
- am
|
79 |
+
- yi
|
80 |
+
- lo
|
81 |
+
- uz
|
82 |
+
- fo
|
83 |
+
- ht
|
84 |
+
- ps
|
85 |
+
- tk
|
86 |
+
- nn
|
87 |
+
- mt
|
88 |
+
- sa
|
89 |
+
- lb
|
90 |
+
- my
|
91 |
+
- bo
|
92 |
+
- tl
|
93 |
+
- mg
|
94 |
+
- as
|
95 |
+
- tt
|
96 |
+
- haw
|
97 |
+
- ln
|
98 |
+
- ha
|
99 |
+
- ba
|
100 |
+
- jw
|
101 |
+
- su
|
102 |
+
tags:
|
103 |
+
- audio
|
104 |
+
- automatic-speech-recognition
|
105 |
+
- hf-asr-leaderboard
|
106 |
+
widget:
|
107 |
+
- example_title: Librispeech sample 1
|
108 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
109 |
+
- example_title: Librispeech sample 2
|
110 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
111 |
+
pipeline_tag: automatic-speech-recognition
|
112 |
+
license: apache-2.0
|
113 |
+
datasets:
|
114 |
+
- ivrit-ai/whisper-training
|
115 |
+
---
|
116 |
+
|
117 |
+
# NOTE: THIS IS A CT-2 (Faster-Whisper) version of the model
|
118 |
+
the original model can be found [here](https://huggingface.co/ivrit-ai/whisper-large-v2-tuned)
|
119 |
+
|
120 |
+
# Whisper
|
121 |
+
|
122 |
+
Whisper is a pre-trained model for automatic speech recognition (ASR) and speech translation.
|
123 |
+
More details about it are available [here](https://huggingface.co/openai/whisper-large-v2).
|
124 |
+
|
125 |
+
**whisper-large-v2-tuned** is a version of whisper-large-v2, fine-tuned by [ivrit.ai](https://www.ivrit.ai) to improve Hebrew ASR using crowd-sourced labeling.
|
126 |
+
|
127 |
+
## Model details
|
128 |
+
|
129 |
+
This model comes as a single checkpoint, whisper-large-v2-tuned.
|
130 |
+
It is a 1550M parameters multi-lingual ASR solution.
|
131 |
+
|
132 |
+
# Usage
|
133 |
+
|
134 |
+
To transcribe audio samples, the model has to be used alongside a [`WhisperProcessor`](https://huggingface.co/docs/transformers/model_doc/whisper#transformers.WhisperProcessor).
|
135 |
+
|
136 |
+
```python
|
137 |
+
import torch
|
138 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
139 |
+
|
140 |
+
SAMPLING_RATE = 16000
|
141 |
+
|
142 |
+
has_cuda = torch.cuda.is_available()
|
143 |
+
model_path = 'ivrit-ai/whisper-large-v2-tuned'
|
144 |
+
|
145 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_path)
|
146 |
+
if has_cuda:
|
147 |
+
model.to('cuda:0')
|
148 |
+
|
149 |
+
processor = WhisperProcessor.from_pretrained(model_path)
|
150 |
+
|
151 |
+
# audio_resample based on entry being part of an existing dataset.
|
152 |
+
# Alternatively, this can be loaded from an audio file.
|
153 |
+
audio_resample = librosa.resample(entry['audio']['array'], orig_sr=entry['audio']['sampling_rate'], target_sr=SAMPLING_RATE)
|
154 |
+
|
155 |
+
input_features = processor(audio_resample, sampling_rate=SAMPLING_RATE, return_tensors="pt").input_features
|
156 |
+
if has_cuda:
|
157 |
+
input_features = input_features.to('cuda:0')
|
158 |
+
|
159 |
+
predicted_ids = model.generate(input_features, language='he', num_beams=5)
|
160 |
+
transcript = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
161 |
+
|
162 |
+
print(f'Transcript: {transcription[0]}')
|
163 |
+
```
|
164 |
+
|
165 |
+
## Evaluation
|
166 |
+
|
167 |
+
You can use the [evaluate_model.py](https://github.com/yairl/ivrit.ai/blob/master/evaluate_model.py) reference on GitHub to evalute the model's quality.
|
168 |
+
|
169 |
+
## Long-Form Transcription
|
170 |
+
|
171 |
+
The Whisper model is intrinsically designed to work on audio samples of up to 30s in duration. However, by using a chunking
|
172 |
+
algorithm, it can be used to transcribe audio samples of up to arbitrary length. This is possible through Transformers
|
173 |
+
[`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
174 |
+
method. Chunking is enabled by setting `chunk_length_s=30` when instantiating the pipeline. With chunking enabled, the pipeline
|
175 |
+
can be run with batched inference. It can also be extended to predict sequence level timestamps by passing `return_timestamps=True`:
|
176 |
+
|
177 |
+
```python
|
178 |
+
>>> import torch
|
179 |
+
>>> from transformers import pipeline
|
180 |
+
>>> from datasets import load_dataset
|
181 |
+
|
182 |
+
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
183 |
+
|
184 |
+
>>> pipe = pipeline(
|
185 |
+
>>> "automatic-speech-recognition",
|
186 |
+
>>> model="ivrit-ai/whisper-large-v2-tuned",
|
187 |
+
>>> chunk_length_s=30,
|
188 |
+
>>> device=device,
|
189 |
+
>>> )
|
190 |
+
|
191 |
+
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
192 |
+
>>> sample = ds[0]["audio"]
|
193 |
+
|
194 |
+
>>> prediction = pipe(sample.copy(), batch_size=8)["text"]
|
195 |
+
" Mr. Quilter is the apostle of the middle classes, and we are glad to welcome his gospel."
|
196 |
+
|
197 |
+
>>> # we can also return timestamps for the predictions
|
198 |
+
>>> prediction = pipe(sample.copy(), batch_size=8, return_timestamps=True)["chunks"]
|
199 |
+
[{'text': ' Mr. Quilter is the apostle of the middle classes and we are glad to welcome his gospel.',
|
200 |
+
'timestamp': (0.0, 5.44)}]
|
201 |
+
```
|
202 |
+
|
203 |
+
Refer to the blog post [ASR Chunking](https://huggingface.co/blog/asr-chunking) for more details on the chunking algorithm.
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
### BibTeX entry and citation info
|
208 |
+
|
209 |
+
**ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development**
|
210 |
+
```bibtex
|
211 |
+
@misc{marmor2023ivritai,
|
212 |
+
title={ivrit.ai: A Comprehensive Dataset of Hebrew Speech for AI Research and Development},
|
213 |
+
author={Yanir Marmor and Kinneret Misgav and Yair Lifshitz},
|
214 |
+
year={2023},
|
215 |
+
eprint={2307.08720},
|
216 |
+
archivePrefix={arXiv},
|
217 |
+
primaryClass={eess.AS}
|
218 |
+
}
|
219 |
+
```
|
220 |
+
|
221 |
+
**Whisper: Robust Speech Recognition via Large-Scale Weak Supervision**
|
222 |
+
```bibtex
|
223 |
+
@misc{radford2022whisper,
|
224 |
+
doi = {10.48550/ARXIV.2212.04356},
|
225 |
+
url = {https://arxiv.org/abs/2212.04356},
|
226 |
+
author = {Radford, Alec and Kim, Jong Wook and Xu, Tao and Brockman, Greg and McLeavey, Christine and Sutskever, Ilya},
|
227 |
+
title = {Robust Speech Recognition via Large-Scale Weak Supervision},
|
228 |
+
publisher = {arXiv},
|
229 |
+
year = {2022},
|
230 |
+
copyright = {arXiv.org perpetual, non-exclusive license}
|
231 |
+
}
|
232 |
+
```
|