Antonio Serrano Muñoz
commited on
Commit
•
26667a7
1
Parent(s):
a803152
Add files
Browse files- README.md +88 -0
- agent.pickle +3 -0
- agent.pt +3 -0
README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: skrl
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- skrl
|
7 |
+
model-index:
|
8 |
+
- name: PPO
|
9 |
+
results:
|
10 |
+
- metrics:
|
11 |
+
- type: mean_reward
|
12 |
+
value: 5094.76 +/- 310.06
|
13 |
+
name: Total reward (mean)
|
14 |
+
task:
|
15 |
+
type: reinforcement-learning
|
16 |
+
name: reinforcement-learning
|
17 |
+
dataset:
|
18 |
+
name: IsaacGymEnvs-Ant
|
19 |
+
type: IsaacGymEnvs-Ant
|
20 |
+
---
|
21 |
+
|
22 |
+
<!-- ---
|
23 |
+
torch: 4996.72 +/- 273.16
|
24 |
+
jax: 5094.76 +/- 310.06
|
25 |
+
numpy: 4542.73 +/- 467.69
|
26 |
+
--- -->
|
27 |
+
|
28 |
+
# IsaacGymEnvs-Ant-PPO
|
29 |
+
|
30 |
+
Trained agent for [NVIDIA Isaac Gym Preview](https://github.com/NVIDIA-Omniverse/IsaacGymEnvs) environments.
|
31 |
+
|
32 |
+
- **Task:** Ant
|
33 |
+
- **Agent:** [PPO](https://skrl.readthedocs.io/en/latest/api/agents/ppo.html)
|
34 |
+
|
35 |
+
# Usage (with skrl)
|
36 |
+
|
37 |
+
Note: Visit the skrl [Examples](https://skrl.readthedocs.io/en/latest/intro/examples.html) section to access the scripts.
|
38 |
+
|
39 |
+
* PyTorch
|
40 |
+
|
41 |
+
```python
|
42 |
+
from skrl.utils.huggingface import download_model_from_huggingface
|
43 |
+
|
44 |
+
# assuming that there is an agent named `agent`
|
45 |
+
path = download_model_from_huggingface("skrl/IsaacGymEnvs-Ant-PPO", filename="agent.pt")
|
46 |
+
agent.load(path)
|
47 |
+
```
|
48 |
+
|
49 |
+
* JAX
|
50 |
+
|
51 |
+
```python
|
52 |
+
from skrl.utils.huggingface import download_model_from_huggingface
|
53 |
+
|
54 |
+
# assuming that there is an agent named `agent`
|
55 |
+
path = download_model_from_huggingface("skrl/IsaacGymEnvs-Ant-PPO", filename="agent.pickle")
|
56 |
+
agent.load(path)
|
57 |
+
```
|
58 |
+
|
59 |
+
# Hyperparameters
|
60 |
+
|
61 |
+
Note: Undefined parameters keep their values by default.
|
62 |
+
|
63 |
+
```python
|
64 |
+
# https://skrl.readthedocs.io/en/latest/api/agents/ppo.html#configuration-and-hyperparameters
|
65 |
+
cfg = PPO_DEFAULT_CONFIG.copy()
|
66 |
+
cfg["rollouts"] = 16 # memory_size
|
67 |
+
cfg["learning_epochs"] = 4
|
68 |
+
cfg["mini_batches"] = 2 # 16 * 4096 / 32768
|
69 |
+
cfg["discount_factor"] = 0.99
|
70 |
+
cfg["lambda"] = 0.95
|
71 |
+
cfg["learning_rate"] = 3e-4
|
72 |
+
cfg["learning_rate_scheduler"] = KLAdaptiveRL
|
73 |
+
cfg["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008}
|
74 |
+
cfg["random_timesteps"] = 0
|
75 |
+
cfg["learning_starts"] = 0
|
76 |
+
cfg["grad_norm_clip"] = 0
|
77 |
+
cfg["ratio_clip"] = 0.2
|
78 |
+
cfg["value_clip"] = 0.2
|
79 |
+
cfg["clip_predicted_values"] = True
|
80 |
+
cfg["entropy_loss_scale"] = 0.0
|
81 |
+
cfg["value_loss_scale"] = 1.0
|
82 |
+
cfg["kl_threshold"] = 0
|
83 |
+
cfg["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01
|
84 |
+
cfg["state_preprocessor"] = RunningStandardScaler
|
85 |
+
cfg["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device}
|
86 |
+
cfg["value_preprocessor"] = RunningStandardScaler
|
87 |
+
cfg["value_preprocessor_kwargs"] = {"size": 1, "device": device}
|
88 |
+
```
|
agent.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c844cbfedb1830e7fbc8bd3e4f73aa0f877f122ccb4d4eebbc58eabaddc7ea22
|
3 |
+
size 1372069
|
agent.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a60ed3ee706530728f72cf2f4c56c8b7e12d6041131b3ce45e37c8690701aaf
|
3 |
+
size 705698
|