Antonio Serrano Muñoz
commited on
Commit
•
488b1a8
1
Parent(s):
c7eb3be
Add README
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: skrl
|
3 |
+
tags:
|
4 |
+
- deep-reinforcement-learning
|
5 |
+
- reinforcement-learning
|
6 |
+
- skrl
|
7 |
+
model-index:
|
8 |
+
- name: PPO
|
9 |
+
results:
|
10 |
+
- metrics:
|
11 |
+
- type: mean_reward
|
12 |
+
value: 2383.55 +/- 449.01
|
13 |
+
name: Total reward (mean)
|
14 |
+
task:
|
15 |
+
type: reinforcement-learning
|
16 |
+
name: reinforcement-learning
|
17 |
+
dataset:
|
18 |
+
name: OmniIsaacGymEnvs-FrankaCabinet
|
19 |
+
type: OmniIsaacGymEnvs-FrankaCabinet
|
20 |
+
---
|
21 |
+
|
22 |
+
# OmniIsaacGymEnvs-FrankaCabinet-PPO
|
23 |
+
|
24 |
+
Trained agent model for [NVIDIA Omniverse Isaac Gym](https://github.com/NVIDIA-Omniverse/OmniIsaacGymEnvs) environment
|
25 |
+
|
26 |
+
- **Task:** FrankaCabinet
|
27 |
+
- **Agent:** [PPO](https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html)
|
28 |
+
|
29 |
+
# Usage (with skrl)
|
30 |
+
|
31 |
+
```python
|
32 |
+
from skrl.utils.huggingface import download_model_from_huggingface
|
33 |
+
|
34 |
+
# assuming that there is an agent named `agent`
|
35 |
+
path = download_model_from_huggingface("skrl/OmniIsaacGymEnvs-FrankaCabinet-PPO")
|
36 |
+
agent.load(path)
|
37 |
+
```
|
38 |
+
|
39 |
+
# Hyperparameters
|
40 |
+
|
41 |
+
```python
|
42 |
+
# https://skrl.readthedocs.io/en/latest/modules/skrl.agents.ppo.html#configuration-and-hyperparameters
|
43 |
+
cfg_ppo = PPO_DEFAULT_CONFIG.copy()
|
44 |
+
cfg_ppo["rollouts"] = 16 # memory_size
|
45 |
+
cfg_ppo["learning_epochs"] = 8
|
46 |
+
cfg_ppo["mini_batches"] = 8 # 16 * 4096 / 8192
|
47 |
+
cfg_ppo["discount_factor"] = 0.99
|
48 |
+
cfg_ppo["lambda"] = 0.95
|
49 |
+
cfg_ppo["learning_rate"] = 5e-4
|
50 |
+
cfg_ppo["learning_rate_scheduler"] = KLAdaptiveRL
|
51 |
+
cfg_ppo["learning_rate_scheduler_kwargs"] = {"kl_threshold": 0.008}
|
52 |
+
cfg_ppo["random_timesteps"] = 0
|
53 |
+
cfg_ppo["learning_starts"] = 0
|
54 |
+
cfg_ppo["grad_norm_clip"] = 1.0
|
55 |
+
cfg_ppo["ratio_clip"] = 0.2
|
56 |
+
cfg_ppo["value_clip"] = 0.2
|
57 |
+
cfg_ppo["clip_predicted_values"] = True
|
58 |
+
cfg_ppo["entropy_loss_scale"] = 0.0
|
59 |
+
cfg_ppo["value_loss_scale"] = 2.0
|
60 |
+
cfg_ppo["kl_threshold"] = 0
|
61 |
+
cfg_ppo["rewards_shaper"] = lambda rewards, timestep, timesteps: rewards * 0.01
|
62 |
+
cfg_ppo["state_preprocessor"] = RunningStandardScaler
|
63 |
+
cfg_ppo["state_preprocessor_kwargs"] = {"size": env.observation_space, "device": device}
|
64 |
+
cfg_ppo["value_preprocessor"] = RunningStandardScaler
|
65 |
+
cfg_ppo["value_preprocessor_kwargs"] = {"size": 1, "device": device}
|
66 |
+
# logging to TensorBoard and writing checkpoints
|
67 |
+
cfg_ppo["experiment"]["write_interval"] = 120
|
68 |
+
cfg_ppo["experiment"]["checkpoint_interval"] = 1200
|
69 |
+
```
|