--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: ViT-VGGFace results: [] --- # ViT-VGGFace This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8361 - Accuracy: 0.8306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.6402 | 0.9982 | 416 | 1.7366 | 0.7127 | | 1.1955 | 1.9988 | 833 | 1.2342 | 0.7782 | | 0.9051 | 2.9994 | 1250 | 1.0314 | 0.8023 | | 0.7446 | 4.0 | 1667 | 0.9074 | 0.8172 | | 0.8081 | 4.9910 | 2080 | 0.8361 | 0.8306 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+rocm6.0 - Datasets 2.20.0 - Tokenizers 0.19.1