{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e4f22c3bf40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e4f22c44040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e4f22c440d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e4f22c44160>", "_build": "<function ActorCriticPolicy._build at 0x7e4f22c441f0>", "forward": "<function ActorCriticPolicy.forward at 0x7e4f22c44280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e4f22c44310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e4f22c443a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7e4f22c44430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e4f22c444c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e4f22c44550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e4f22c445e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e4f22bcdd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720645446711557827, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADNWCD6XKqU/MjkWP46/0r64pS4+aDuoPgAAAAAAAAAAzchpPXuKoLoqSxm8oDlftufAhzoFLMY1AACAPwAAgD8t5wo+MyibPr7by70P0FC+cAARPUediTwAAAAAAAAAAOakQz3pJxI+7V07vn/AP765b7u9cHd+vQAAAAAAAAAA02AVvhn5Tz5tZGU+RaqBvqPh+rs2uIy8AAAAAAAAAABNl5U+5EBgP/qlFLypOqC+r3scPtNtL70AAAAAAAAAAICJ8L3ucYA/S/FMPWqBjb5SaIK9MiuzPQAAAAAAAAAAoK4XvmvY8D1CZUw+FUmHvsUkR7xHFQo+AAAAAAAAAAAAp+68XBMaut3Cl7qeRI61UAaEunzatDkAAIA/AACAP6YP+D3DYSu66GPPsiLNB7HRgBq4ZaWOMwAAgD8AAIA/msFouzht5zxiLxe9cfpjvhDJAz041Aq8AAAAAAAAAABm8AC8NK6TvNaRKTwT4xg9eIACvgI87D0AAIA/AACAP5qixjz2lga8PpC1ur9mvjwunF+9XgedPQAAgD8AAIA/QAgEPvfmhz6yPZS9ErCSvknG1DyePiS+AAAAAAAAAAAzHe28tv4vvGjMDT3CyaO9/JbROUgZkTsAAIA/AACAPwBCGr2o7YU9uHcnvZZAf75hI8w7JRwnvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEvIgK4QSSOMAWyUTQ4BjAF0lEdAlQwBrnDBM3V9lChoBkdAcef7N0NjLGgHTSsBaAhHQJUMIrz5GjN1fZQoaAZHQHDiyfpUxVRoB00qAWgIR0CVDMHCGetkdX2UKGgGR0ByQ4EQoTf0aAdNKgFoCEdAlQ0zyjHn2nV9lChoBkdAbrUCI1tO22gHTSABaAhHQJUNphhH9WJ1fZQoaAZHQGv5KoAGSp1oB01BAWgIR0CVJQnqVyFPdX2UKGgGR0BsJYskIHC5aAdNEgFoCEdAlSXWCAc1fnV9lChoBkdAa42+tbLU1GgHTY4BaAhHQJUm/KZDzAh1fZQoaAZHQHBmzTfBN21oB00dAWgIR0CVKEcFQl8gdX2UKGgGR0BwOrzI3irDaAdNUAFoCEdAlSiUmQbMo3V9lChoBkdAcaEabF0gbWgHTSUBaAhHQJUow43m3fB1fZQoaAZHQHKnM2R7qptoB01NAWgIR0CVKSZtNzsAdX2UKGgGR0BuTAuh9LHuaAdNbwFoCEdAlSopbt7a7HV9lChoBkdAck7s9SuQqGgHTcEBaAhHQJUqMiqyWzF1fZQoaAZHQDcdKkEcKgJoB0v5aAhHQJUqVIAfdRB1fZQoaAZHQHFZgUtZmqZoB00cAWgIR0CVKp1gYxcndX2UKGgGR0BxOYf2bobGaAdNiAFoCEdAlSsJv5xionV9lChoBkdAcMF5e7cwg2gHTRoBaAhHQJUrvAxi5NJ1fZQoaAZHQHC4czMzMzNoB01fAWgIR0CVK+7ojfNzdX2UKGgGR0BvZKfL9uP4aAdNSgFoCEdAlSwMYMvysnV9lChoBkdAbqlB/qgRLGgHTUEBaAhHQJUtEow22oh1fZQoaAZHQHCmr2+PBBRoB01PAWgIR0CVMAUd7v5QdX2UKGgGR0ByiHPcBU70aAdNPQFoCEdAlTEpflZHNHV9lChoBkdAbMNTOPeYUmgHTRoBaAhHQJUxathd+od1fZQoaAZHQG4zsHryDqZoB00aAWgIR0CVMZ8L8aXKdX2UKGgGR0BwrVTxXnyNaAdNAwFoCEdAlTLi9ugpSnV9lChoBkdAcQIomG/N7mgHTRwBaAhHQJUzk4JeE7J1fZQoaAZHQG/NDin5zo5oB00iAWgIR0CVM57+DOC5dX2UKGgGR0Bw7OxHG0eEaAdNSAFoCEdAlTQAdbPhQ3V9lChoBkdAb9ubrC3w1GgHTS0BaAhHQJU1DE87p3Z1fZQoaAZHQHBjaqGUOd5oB01RAWgIR0CVNU+xGDtgdX2UKGgGR0Bx0Ui9qUNbaAdNFwFoCEdAlTWAnDziCXV9lChoBkdAcJXeuFHrhWgHTToBaAhHQJU2QnmaH9F1fZQoaAZHQHBrkGmk30hoB022AWgIR0CVNsgH/tIDdX2UKGgGR0BwJAH9m6GyaAdNIgFoCEdAlTcpjH4oJHV9lChoBkdAcMJ7mMfigmgHTVoBaAhHQJU3Z96Tnq51fZQoaAZHQEaUsT37DVJoB0u+aAhHQJU6FjOLR8d1fZQoaAZHQG97BMi8nNRoB00JAWgIR0CVOonJT2nLdX2UKGgGR0BxBzQpnYg8aAdNRgFoCEdAlTuJ8F6iTXV9lChoBkdAcHDFyJbdJ2gHTT0BaAhHQJU+Ms/Y8Md1fZQoaAZHQHAgGMju8btoB01CAWgIR0CVPzmBvrGBdX2UKGgGR0BwVjPu5SWJaAdNQwFoCEdAlT865LAYYXV9lChoBkdAbXRzqbBoEmgHTXsBaAhHQJU/nch1Tzd1fZQoaAZHQHEP2sFMZgpoB00fAWgIR0CVP8IhyKekdX2UKGgGR0ByFSkBS1mbaAdNEQFoCEdAlUGF8Ti84HV9lChoBkdAcdVpzLfUF2gHTSMBaAhHQJVCmgzxgAp1fZQoaAZHQHH4IKhL5ARoB012AWgIR0CVQuK28Zk1dX2UKGgGR0ByeW6mO2iMaAdNVAFoCEdAlUL/nOjZc3V9lChoBkdAcEgAPNFBp2gHTUgBaAhHQJVDNRfnfVJ1fZQoaAZHQHKC3XEqDsdoB02AAWgIR0CVQ7d1+y7gdX2UKGgGR0Bw9E6V+qioaAdNPwFoCEdAlUcnxBmf5HV9lChoBkc//3gXMyJsPGgHS+poCEdAlUdKu0TlDHV9lChoBkdAbfBX1anrIGgHTSkBaAhHQJVHVInSfDl1fZQoaAZHQHFOD15B1LdoB02CAWgIR0CVXjmxdIGydX2UKGgGR0BagJ1zQu27aAdN6ANoCEdAlV5+Fg2If3V9lChoBkdAc0o4CZF5OmgHTScBaAhHQJVfsaisXBR1fZQoaAZHQHBYmqgh8ploB00yAWgIR0CVX8ErGza9dX2UKGgGR0Bt9hDkU9IPaAdNNwFoCEdAlV/sZccENnV9lChoBkdAcU/pYcNpd2gHTSkBaAhHQJVhYsGxD9h1fZQoaAZHQHGfavA44qBoB00WAWgIR0CVYgDJU5uJdX2UKGgGR0ByGMdT5wfhaAdNIwFoCEdAlWJXIuGsWHV9lChoBkdAcVdZjQRf4WgHTXkBaAhHQJVijlFMIu51fZQoaAZHQHCTfVmSQo1oB006AWgIR0CVYti4rjHXdX2UKGgGR0BvFMBsANobaAdNKgFoCEdAlWNIlyBClnV9lChoBkdAcTt/WUbDM2gHTVIBaAhHQJVkC55JK8N1fZQoaAZHQHHBILw4KhNoB00iAWgIR0CVZhzkZJkHdX2UKGgGR0BthHZRKpT/aAdNTAFoCEdAlWev/vOQhnV9lChoBkdAbyjjLjghr2gHTVcBaAhHQJVn/in5zo51fZQoaAZHQHBkJ++dsi1oB003AWgIR0CVaRoSL61tdX2UKGgGR0BvFaREF4cFaAdNWgFoCEdAlWovwRXfZXV9lChoBkdAcYmkleF+NWgHTTsBaAhHQJVqjexfOUt1fZQoaAZHQF1gUgSvkiloB03oA2gIR0CVaoxnWattdX2UKGgGR0BtxbNIK+i8aAdNIAFoCEdAlWwe2VmjCnV9lChoBkdAb31fuTibUmgHTWUBaAhHQJVsMstkFwF1fZQoaAZHQHItTOxB3RpoB01iAWgIR0CVbEU8mrsCdX2UKGgGR0BxCcZEUj9oaAdNNQFoCEdAlWxF7MPjGXV9lChoBkdAcMSBpYcNpmgHS/5oCEdAlWxai48U23V9lChoBkdAcSWVU+9rXWgHTS4BaAhHQJVsz6dlNDd1fZQoaAZHQHHxKAvtdAxoB01JAWgIR0CVba6Hj6vadX2UKGgGR0BwJtoQFs55aAdNQAFoCEdAlW7tQKrq+3V9lChoBkdAUIRGx2SuAGgHS91oCEdAlW9dyLhrFnV9lChoBkdAcEkvDgqEvmgHTYoBaAhHQJVv/jfek591fZQoaAZHQG+EarmyPdVoB01mAWgIR0CVckEcsDnvdX2UKGgGR0BwFIQFs54oaAdNTAFoCEdAlXLPCVKPGXV9lChoBkdAcFJFSsKb8WgHTW0BaAhHQJV1gwDeTFF1fZQoaAZHQG968La24NJoB01NAWgIR0CVdbnAIppfdX2UKGgGR0BvULor4FibaAdNIwFoCEdAlXXdhqj8DXV9lChoBkdAcPx8iwB5o2gHTT8BaAhHQJV21z2exwB1fZQoaAZHQG4cb5mAbyZoB00/AWgIR0CVdwiiqQzUdX2UKGgGR0Bx2uNaQmu1aAdNUQFoCEdAlXeWW6bvw3V9lChoBkdAce+jNY8uBmgHTYgBaAhHQJV38lhPTG51fZQoaAZHQHGysebNKRNoB01nAWgIR0CVeEZKFqSHdX2UKGgGR0BwwozWPLgXaAdNLgFoCEdAlXhLgOz6anV9lChoBkdAcTDdq+JxemgHTRUBaAhHQJV5OqkuYhN1fZQoaAZHQG8FDmCAc1hoB03CAWgIR0CVeYxBE8aGdX2UKGgGR0BwF9SMtK7JaAdNGQFoCEdAlXn0zTF2m3V9lChoBkdAckotI065oWgHTZ0BaAhHQJV6otPHktF1fZQoaAZHQHFRbkS26TZoB00zAWgIR0CVfLtzjm0WdX2UKGgGR0BwMLHFPznSaAdNmwFoCEdAlXzMfNiYs3V9lChoBkdAbo0eJ53Tu2gHTWYBaAhHQJV/HjdYW+J1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |