--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer datasets: - xtreme_s metrics: - wer model-index: - name: wav2vec2-large-mms-1b-somalia results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: xtreme_s type: xtreme_s config: fleurs.so_so split: test args: fleurs.so_so metrics: - name: Wer type: wer value: 0.4330026371970363 --- # wav2vec2-large-mms-1b-somalia This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the xtreme_s dataset. It achieves the following results on the evaluation set: - Loss: 0.5553 - Wer: 0.4330 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 6.5097 | 0.0558 | 100 | 0.6980 | 0.4802 | | 0.4771 | 0.1117 | 200 | 0.6315 | 0.4613 | | 0.4098 | 0.1675 | 300 | 0.6112 | 0.4519 | | 0.4555 | 0.2233 | 400 | 0.6085 | 0.4540 | | 0.4319 | 0.2792 | 500 | 0.6041 | 0.4614 | | 0.4582 | 0.3350 | 600 | 0.5927 | 0.4526 | | 0.3879 | 0.3908 | 700 | 0.6079 | 0.4530 | | 0.3919 | 0.4467 | 800 | 0.6135 | 0.4479 | | 0.4245 | 0.5025 | 900 | 0.5879 | 0.4461 | | 0.3872 | 0.5583 | 1000 | 0.6088 | 0.4627 | | 0.3843 | 0.6142 | 1100 | 0.5939 | 0.4451 | | 0.3842 | 0.6700 | 1200 | 0.6133 | 0.4631 | | 0.3771 | 0.7259 | 1300 | 0.6026 | 0.4510 | | 0.4458 | 0.7817 | 1400 | 0.5965 | 0.4494 | | 0.4114 | 0.8375 | 1500 | 0.5950 | 0.4472 | | 0.4135 | 0.8934 | 1600 | 0.6106 | 0.4613 | | 0.3763 | 0.9492 | 1700 | 0.6082 | 0.4426 | | 0.442 | 1.0050 | 1800 | 0.5922 | 0.4482 | | 0.381 | 1.0609 | 1900 | 0.5827 | 0.4419 | | 0.3874 | 1.1167 | 2000 | 0.5816 | 0.4518 | | 0.4602 | 1.1725 | 2100 | 0.5888 | 0.4453 | | 0.3709 | 1.2284 | 2200 | 0.5870 | 0.4447 | | 0.3991 | 1.2842 | 2300 | 0.5749 | 0.4426 | | 0.3771 | 1.3400 | 2400 | 0.5743 | 0.4396 | | 0.351 | 1.3959 | 2500 | 0.5956 | 0.4414 | | 0.358 | 1.4517 | 2600 | 0.5772 | 0.4368 | | 0.4076 | 1.5075 | 2700 | 0.5931 | 0.4384 | | 0.4322 | 1.5634 | 2800 | 0.5795 | 0.4407 | | 0.359 | 1.6192 | 2900 | 0.5814 | 0.4408 | | 0.3714 | 1.6750 | 3000 | 0.5794 | 0.4366 | | 0.407 | 1.7309 | 3100 | 0.5673 | 0.4404 | | 0.3803 | 1.7867 | 3200 | 0.5754 | 0.4453 | | 0.3412 | 1.8425 | 3300 | 0.5974 | 0.4470 | | 0.3826 | 1.8984 | 3400 | 0.5847 | 0.4422 | | 0.3961 | 1.9542 | 3500 | 0.5800 | 0.4417 | | 0.4035 | 2.0101 | 3600 | 0.5804 | 0.4395 | | 0.3988 | 2.0659 | 3700 | 0.5626 | 0.4379 | | 0.3642 | 2.1217 | 3800 | 0.5745 | 0.4393 | | 0.3543 | 2.1776 | 3900 | 0.5786 | 0.4414 | | 0.3577 | 2.2334 | 4000 | 0.5736 | 0.4376 | | 0.3818 | 2.2892 | 4100 | 0.5745 | 0.4412 | | 0.3538 | 2.3451 | 4200 | 0.5856 | 0.4370 | | 0.3902 | 2.4009 | 4300 | 0.5708 | 0.4370 | | 0.3915 | 2.4567 | 4400 | 0.5819 | 0.4372 | | 0.3918 | 2.5126 | 4500 | 0.5620 | 0.4366 | | 0.3716 | 2.5684 | 4600 | 0.5801 | 0.4497 | | 0.3696 | 2.6242 | 4700 | 0.5640 | 0.4321 | | 0.3532 | 2.6801 | 4800 | 0.5772 | 0.4418 | | 0.4039 | 2.7359 | 4900 | 0.5660 | 0.4388 | | 0.3488 | 2.7917 | 5000 | 0.5666 | 0.4364 | | 0.3482 | 2.8476 | 5100 | 0.5662 | 0.4428 | | 0.3793 | 2.9034 | 5200 | 0.5620 | 0.4368 | | 0.3808 | 2.9592 | 5300 | 0.5559 | 0.4387 | | 0.3403 | 3.0151 | 5400 | 0.5647 | 0.4387 | | 0.3654 | 3.0709 | 5500 | 0.5515 | 0.4367 | | 0.3614 | 3.1267 | 5600 | 0.5593 | 0.4410 | | 0.3399 | 3.1826 | 5700 | 0.5604 | 0.4353 | | 0.3627 | 3.2384 | 5800 | 0.5559 | 0.4379 | | 0.3583 | 3.2942 | 5900 | 0.5564 | 0.4343 | | 0.3897 | 3.3501 | 6000 | 0.5593 | 0.4362 | | 0.3523 | 3.4059 | 6100 | 0.5578 | 0.4345 | | 0.3412 | 3.4618 | 6200 | 0.5586 | 0.4346 | | 0.3877 | 3.5176 | 6300 | 0.5529 | 0.4346 | | 0.3605 | 3.5734 | 6400 | 0.5577 | 0.4346 | | 0.3869 | 3.6293 | 6500 | 0.5522 | 0.4332 | | 0.3906 | 3.6851 | 6600 | 0.5591 | 0.4312 | | 0.3469 | 3.7409 | 6700 | 0.5585 | 0.4351 | | 0.3665 | 3.7968 | 6800 | 0.5554 | 0.4333 | | 0.3851 | 3.8526 | 6900 | 0.5543 | 0.4346 | | 0.3195 | 3.9084 | 7000 | 0.5558 | 0.4348 | | 0.346 | 3.9643 | 7100 | 0.5553 | 0.4330 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0