File size: 1,701 Bytes
0d74b40
 
24e64dc
0d74b40
 
 
 
 
 
 
 
 
 
 
 
 
 
24e64dc
 
0d74b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24e64dc
0d74b40
 
 
 
 
24e64dc
 
 
 
 
0d74b40
 
 
 
24e64dc
0d74b40
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
model-index:
- name: finetuned-Sentiment-classfication-ROBERTA-model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-Sentiment-classfication-ROBERTA-model

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2222
- Rmse: 0.2936

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 16

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rmse   |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.6684        | 2.72  | 500  | 0.3931          | 0.4892 |
| 0.1963        | 5.43  | 1000 | 0.2222          | 0.2936 |
| 0.0755        | 8.15  | 1500 | 0.2479          | 0.2757 |
| 0.0413        | 10.86 | 2000 | 0.3233          | 0.2794 |
| 0.0213        | 13.58 | 2500 | 0.3590          | 0.2689 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3