slimaneMakh commited on
Commit
6977101
·
verified ·
1 Parent(s): 152b0f5

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,501 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:100K<n<1M
9
+ - loss:TripletLoss
10
+ base_model: FacebookAI/xlm-roberta-base
11
+ metrics:
12
+ - cosine_accuracy
13
+ - dot_accuracy
14
+ - manhattan_accuracy
15
+ - euclidean_accuracy
16
+ - max_accuracy
17
+ widget:
18
+ - source_sentence: Skip
19
+ sentences:
20
+ - Ships
21
+ - Kapital akcyjny
22
+ - Other finance income
23
+ - source_sentence: IIII
24
+ sentences:
25
+ - iii
26
+ - Gauti dividendai
27
+ - Loans given
28
+ - source_sentence: IVE
29
+ sentences:
30
+ - HH
31
+ - Koszty finansowe
32
+ - Current borrowings
33
+ - source_sentence: K K
34
+ sentences:
35
+ - TOTAL ACTIF
36
+ - Nuomos mokejimai
37
+ - Accruals
38
+ - source_sentence: Sales
39
+ sentences:
40
+ - Revenue
41
+ - Operating profit
42
+ - Current borrowings
43
+ pipeline_tag: sentence-similarity
44
+ model-index:
45
+ - name: SentenceTransformer based on FacebookAI/xlm-roberta-base
46
+ results:
47
+ - task:
48
+ type: triplet
49
+ name: Triplet
50
+ dataset:
51
+ name: Unknown
52
+ type: unknown
53
+ metrics:
54
+ - type: cosine_accuracy
55
+ value: 0.9987885552019722
56
+ name: Cosine Accuracy
57
+ - type: dot_accuracy
58
+ value: 0.001529316610921369
59
+ name: Dot Accuracy
60
+ - type: manhattan_accuracy
61
+ value: 0.9975135360413657
62
+ name: Manhattan Accuracy
63
+ - type: euclidean_accuracy
64
+ value: 0.9990958312877694
65
+ name: Euclidean Accuracy
66
+ - type: max_accuracy
67
+ value: 0.9990958312877694
68
+ name: Max Accuracy
69
+ ---
70
+
71
+ # SentenceTransformer based on FacebookAI/xlm-roberta-base
72
+
73
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
74
+
75
+ ## Model Details
76
+
77
+ ### Model Description
78
+ - **Model Type:** Sentence Transformer
79
+ - **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
80
+ - **Maximum Sequence Length:** 512 tokens
81
+ - **Output Dimensionality:** 768 tokens
82
+ - **Similarity Function:** Cosine Similarity
83
+ <!-- - **Training Dataset:** Unknown -->
84
+ <!-- - **Language:** Unknown -->
85
+ <!-- - **License:** Unknown -->
86
+
87
+ ### Model Sources
88
+
89
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
90
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
91
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
92
+
93
+ ### Full Model Architecture
94
+
95
+ ```
96
+ SentenceTransformer(
97
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
98
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
99
+ )
100
+ ```
101
+
102
+ ## Usage
103
+
104
+ ### Direct Usage (Sentence Transformers)
105
+
106
+ First install the Sentence Transformers library:
107
+
108
+ ```bash
109
+ pip install -U sentence-transformers
110
+ ```
111
+
112
+ Then you can load this model and run inference.
113
+ ```python
114
+ from sentence_transformers import SentenceTransformer
115
+
116
+ # Download from the 🤗 Hub
117
+ model = SentenceTransformer("slimaneMakh/triplet_CloseHlabel_farLabel_andnegativ-1M-5eps-XLMR_29may")
118
+ # Run inference
119
+ sentences = [
120
+ 'Sales',
121
+ 'Revenue',
122
+ 'Operating profit',
123
+ ]
124
+ embeddings = model.encode(sentences)
125
+ print(embeddings.shape)
126
+ # [3, 768]
127
+
128
+ # Get the similarity scores for the embeddings
129
+ similarities = model.similarity(embeddings, embeddings)
130
+ print(similarities.shape)
131
+ # [3, 3]
132
+ ```
133
+
134
+ <!--
135
+ ### Direct Usage (Transformers)
136
+
137
+ <details><summary>Click to see the direct usage in Transformers</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Downstream Usage (Sentence Transformers)
144
+
145
+ You can finetune this model on your own dataset.
146
+
147
+ <details><summary>Click to expand</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Out-of-Scope Use
154
+
155
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
156
+ -->
157
+
158
+ ## Evaluation
159
+
160
+ ### Metrics
161
+
162
+ #### Triplet
163
+
164
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
165
+
166
+ | Metric | Value |
167
+ |:-------------------|:-----------|
168
+ | cosine_accuracy | 0.9988 |
169
+ | dot_accuracy | 0.0015 |
170
+ | manhattan_accuracy | 0.9975 |
171
+ | euclidean_accuracy | 0.9991 |
172
+ | **max_accuracy** | **0.9991** |
173
+
174
+ <!--
175
+ ## Bias, Risks and Limitations
176
+
177
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
178
+ -->
179
+
180
+ <!--
181
+ ### Recommendations
182
+
183
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
184
+ -->
185
+
186
+ ## Training Details
187
+
188
+ ### Training Dataset
189
+
190
+ #### Unnamed Dataset
191
+
192
+
193
+ * Size: 660,643 training samples
194
+ * Columns: <code>anchor_label</code>, <code>pos_hlabel</code>, and <code>neg_hlabel</code>
195
+ * Approximate statistics based on the first 1000 samples:
196
+ | | anchor_label | pos_hlabel | neg_hlabel |
197
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
198
+ | type | string | string | string |
199
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.86 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.06 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 25 tokens</li></ul> |
200
+ * Samples:
201
+ | anchor_label | pos_hlabel | neg_hlabel |
202
+ |:---------------------------------------------|:-------------------------------------------|:------------------------------------------------------------------------------|
203
+ | <code>Basic earnings (loss) per share</code> | <code>Tavakasum kahjum aktsia kohta</code> | <code>II Kapital z nadwyzki wartosci emisyjnej ponad wartosc nominalna</code> |
204
+ | <code>Comprehensive income</code> | <code>Suma dochodow calkowitych</code> | <code>dont Marques</code> |
205
+ | <code>Cash and cash equivalents</code> | <code>Cash and cash equivalents</code> | <code>Cars incl prepayments</code> |
206
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
207
+ ```json
208
+ {
209
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
210
+ "triplet_margin": 5
211
+ }
212
+ ```
213
+
214
+ ### Evaluation Dataset
215
+
216
+ #### Unnamed Dataset
217
+
218
+
219
+ * Size: 283,133 evaluation samples
220
+ * Columns: <code>anchor_label</code>, <code>pos_hlabel</code>, and <code>neg_hlabel</code>
221
+ * Approximate statistics based on the first 1000 samples:
222
+ | | anchor_label | pos_hlabel | neg_hlabel |
223
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
224
+ | type | string | string | string |
225
+ | details | <ul><li>min: 3 tokens</li><li>mean: 11.78 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.22 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.12 tokens</li><li>max: 29 tokens</li></ul> |
226
+ * Samples:
227
+ | anchor_label | pos_hlabel | neg_hlabel |
228
+ |:--------------------------------------------------------------------------------|:-------------------------------------------------------|:-------------------------------------|
229
+ | <code>Deferred tax assets</code> | <code>Deferred tax assets</code> | <code>Immateriella tillgangar</code> |
230
+ | <code>Equity</code> | <code>EGET KAPITAL inklusive periodens resultat</code> | <code>Materials</code> |
231
+ | <code>Adjustments for decrease (increase) in other operating receivables</code> | <code>Okning av ovriga rorelsetillgangar</code> | <code>Rorelseresultat</code> |
232
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
233
+ ```json
234
+ {
235
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
236
+ "triplet_margin": 5
237
+ }
238
+ ```
239
+
240
+ ### Training Hyperparameters
241
+ #### Non-Default Hyperparameters
242
+
243
+ - `per_device_train_batch_size`: 16
244
+ - `per_device_eval_batch_size`: 16
245
+ - `num_train_epochs`: 1
246
+ - `warmup_ratio`: 0.1
247
+ - `batch_sampler`: no_duplicates
248
+
249
+ #### All Hyperparameters
250
+ <details><summary>Click to expand</summary>
251
+
252
+ - `overwrite_output_dir`: False
253
+ - `do_predict`: False
254
+ - `prediction_loss_only`: True
255
+ - `per_device_train_batch_size`: 16
256
+ - `per_device_eval_batch_size`: 16
257
+ - `per_gpu_train_batch_size`: None
258
+ - `per_gpu_eval_batch_size`: None
259
+ - `gradient_accumulation_steps`: 1
260
+ - `eval_accumulation_steps`: None
261
+ - `learning_rate`: 5e-05
262
+ - `weight_decay`: 0.0
263
+ - `adam_beta1`: 0.9
264
+ - `adam_beta2`: 0.999
265
+ - `adam_epsilon`: 1e-08
266
+ - `max_grad_norm`: 1.0
267
+ - `num_train_epochs`: 1
268
+ - `max_steps`: -1
269
+ - `lr_scheduler_type`: linear
270
+ - `lr_scheduler_kwargs`: {}
271
+ - `warmup_ratio`: 0.1
272
+ - `warmup_steps`: 0
273
+ - `log_level`: passive
274
+ - `log_level_replica`: warning
275
+ - `log_on_each_node`: True
276
+ - `logging_nan_inf_filter`: True
277
+ - `save_safetensors`: True
278
+ - `save_on_each_node`: False
279
+ - `save_only_model`: False
280
+ - `no_cuda`: False
281
+ - `use_cpu`: False
282
+ - `use_mps_device`: False
283
+ - `seed`: 42
284
+ - `data_seed`: None
285
+ - `jit_mode_eval`: False
286
+ - `use_ipex`: False
287
+ - `bf16`: False
288
+ - `fp16`: False
289
+ - `fp16_opt_level`: O1
290
+ - `half_precision_backend`: auto
291
+ - `bf16_full_eval`: False
292
+ - `fp16_full_eval`: False
293
+ - `tf32`: None
294
+ - `local_rank`: 0
295
+ - `ddp_backend`: None
296
+ - `tpu_num_cores`: None
297
+ - `tpu_metrics_debug`: False
298
+ - `debug`: []
299
+ - `dataloader_drop_last`: False
300
+ - `dataloader_num_workers`: 0
301
+ - `dataloader_prefetch_factor`: None
302
+ - `past_index`: -1
303
+ - `disable_tqdm`: False
304
+ - `remove_unused_columns`: True
305
+ - `label_names`: None
306
+ - `load_best_model_at_end`: False
307
+ - `ignore_data_skip`: False
308
+ - `fsdp`: []
309
+ - `fsdp_min_num_params`: 0
310
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
311
+ - `fsdp_transformer_layer_cls_to_wrap`: None
312
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
313
+ - `deepspeed`: None
314
+ - `label_smoothing_factor`: 0.0
315
+ - `optim`: adamw_torch
316
+ - `optim_args`: None
317
+ - `adafactor`: False
318
+ - `group_by_length`: False
319
+ - `length_column_name`: length
320
+ - `ddp_find_unused_parameters`: None
321
+ - `ddp_bucket_cap_mb`: None
322
+ - `ddp_broadcast_buffers`: False
323
+ - `dataloader_pin_memory`: True
324
+ - `dataloader_persistent_workers`: False
325
+ - `skip_memory_metrics`: True
326
+ - `use_legacy_prediction_loop`: False
327
+ - `push_to_hub`: False
328
+ - `resume_from_checkpoint`: None
329
+ - `hub_model_id`: None
330
+ - `hub_strategy`: every_save
331
+ - `hub_private_repo`: False
332
+ - `hub_always_push`: False
333
+ - `gradient_checkpointing`: False
334
+ - `gradient_checkpointing_kwargs`: None
335
+ - `include_inputs_for_metrics`: False
336
+ - `fp16_backend`: auto
337
+ - `push_to_hub_model_id`: None
338
+ - `push_to_hub_organization`: None
339
+ - `mp_parameters`:
340
+ - `auto_find_batch_size`: False
341
+ - `full_determinism`: False
342
+ - `torchdynamo`: None
343
+ - `ray_scope`: last
344
+ - `ddp_timeout`: 1800
345
+ - `torch_compile`: False
346
+ - `torch_compile_backend`: None
347
+ - `torch_compile_mode`: None
348
+ - `dispatch_batches`: None
349
+ - `split_batches`: None
350
+ - `include_tokens_per_second`: False
351
+ - `include_num_input_tokens_seen`: False
352
+ - `neftune_noise_alpha`: None
353
+ - `optim_target_modules`: None
354
+ - `batch_sampler`: no_duplicates
355
+ - `multi_dataset_batch_sampler`: proportional
356
+
357
+ </details>
358
+
359
+ ### Training Logs
360
+ | Epoch | Step | Training Loss | loss | max_accuracy |
361
+ |:------:|:-----:|:-------------:|:------:|:------------:|
362
+ | 0.0121 | 500 | 3.7705 | - | - |
363
+ | 0.0242 | 1000 | 1.4084 | - | - |
364
+ | 0.0363 | 1500 | 0.7062 | - | - |
365
+ | 0.0484 | 2000 | 0.5236 | - | - |
366
+ | 0.0605 | 2500 | 0.4348 | - | - |
367
+ | 0.0727 | 3000 | 0.3657 | - | - |
368
+ | 0.0848 | 3500 | 0.3657 | - | - |
369
+ | 0.0969 | 4000 | 0.2952 | - | - |
370
+ | 0.1090 | 4500 | 0.3805 | - | - |
371
+ | 0.1211 | 5000 | 0.3255 | - | - |
372
+ | 0.1332 | 5500 | 0.2621 | - | - |
373
+ | 0.1453 | 6000 | 0.2377 | - | - |
374
+ | 0.1574 | 6500 | 0.2139 | - | - |
375
+ | 0.1695 | 7000 | 0.2085 | - | - |
376
+ | 0.1816 | 7500 | 0.1809 | - | - |
377
+ | 0.1937 | 8000 | 0.1711 | - | - |
378
+ | 0.2059 | 8500 | 0.1608 | - | - |
379
+ | 0.2180 | 9000 | 0.1808 | - | - |
380
+ | 0.2301 | 9500 | 0.1553 | - | - |
381
+ | 0.2422 | 10000 | 0.1417 | - | - |
382
+ | 0.2543 | 10500 | 0.1329 | - | - |
383
+ | 0.2664 | 11000 | 0.1689 | - | - |
384
+ | 0.2785 | 11500 | 0.1292 | - | - |
385
+ | 0.2906 | 12000 | 0.1181 | - | - |
386
+ | 0.3027 | 12500 | 0.1223 | - | - |
387
+ | 0.3148 | 13000 | 0.129 | - | - |
388
+ | 0.3269 | 13500 | 0.0911 | - | - |
389
+ | 0.3391 | 14000 | 0.113 | - | - |
390
+ | 0.3512 | 14500 | 0.0955 | - | - |
391
+ | 0.3633 | 15000 | 0.108 | - | - |
392
+ | 0.3754 | 15500 | 0.094 | - | - |
393
+ | 0.3875 | 16000 | 0.0947 | - | - |
394
+ | 0.3996 | 16500 | 0.0748 | - | - |
395
+ | 0.4117 | 17000 | 0.0699 | - | - |
396
+ | 0.4238 | 17500 | 0.0707 | - | - |
397
+ | 0.4359 | 18000 | 0.0768 | - | - |
398
+ | 0.4480 | 18500 | 0.0805 | - | - |
399
+ | 0.4601 | 19000 | 0.0705 | - | - |
400
+ | 0.4723 | 19500 | 0.069 | - | - |
401
+ | 0.4844 | 20000 | 0.072 | - | - |
402
+ | 0.4965 | 20500 | 0.0669 | - | - |
403
+ | 0.5086 | 21000 | 0.066 | - | - |
404
+ | 0.5207 | 21500 | 0.0624 | - | - |
405
+ | 0.5328 | 22000 | 0.0687 | - | - |
406
+ | 0.5449 | 22500 | 0.076 | - | - |
407
+ | 0.5570 | 23000 | 0.0563 | - | - |
408
+ | 0.5691 | 23500 | 0.0594 | - | - |
409
+ | 0.5812 | 24000 | 0.0524 | - | - |
410
+ | 0.5933 | 24500 | 0.0528 | - | - |
411
+ | 0.6055 | 25000 | 0.0448 | - | - |
412
+ | 0.6176 | 25500 | 0.041 | - | - |
413
+ | 0.6297 | 26000 | 0.0397 | - | - |
414
+ | 0.6418 | 26500 | 0.0489 | - | - |
415
+ | 0.6539 | 27000 | 0.0595 | - | - |
416
+ | 0.6660 | 27500 | 0.034 | - | - |
417
+ | 0.6781 | 28000 | 0.0569 | - | - |
418
+ | 0.6902 | 28500 | 0.0467 | - | - |
419
+ | 0.7023 | 29000 | 0.0323 | - | - |
420
+ | 0.7144 | 29500 | 0.0428 | - | - |
421
+ | 0.7266 | 30000 | 0.0344 | - | - |
422
+ | 0.7387 | 30500 | 0.029 | - | - |
423
+ | 0.7508 | 31000 | 0.0418 | - | - |
424
+ | 0.7629 | 31500 | 0.0285 | - | - |
425
+ | 0.7750 | 32000 | 0.0425 | - | - |
426
+ | 0.7871 | 32500 | 0.0266 | - | - |
427
+ | 0.7992 | 33000 | 0.0325 | - | - |
428
+ | 0.8113 | 33500 | 0.0215 | - | - |
429
+ | 0.8234 | 34000 | 0.0316 | - | - |
430
+ | 0.8355 | 34500 | 0.0286 | - | - |
431
+ | 0.8476 | 35000 | 0.0285 | - | - |
432
+ | 0.8598 | 35500 | 0.0284 | - | - |
433
+ | 0.8719 | 36000 | 0.0147 | - | - |
434
+ | 0.8840 | 36500 | 0.0217 | - | - |
435
+ | 0.8961 | 37000 | 0.0311 | - | - |
436
+ | 0.9082 | 37500 | 0.0202 | - | - |
437
+ | 0.9203 | 38000 | 0.0236 | - | - |
438
+ | 0.9324 | 38500 | 0.0201 | - | - |
439
+ | 0.9445 | 39000 | 0.0246 | - | - |
440
+ | 0.9566 | 39500 | 0.0177 | - | - |
441
+ | 0.9687 | 40000 | 0.0173 | - | - |
442
+ | 0.9808 | 40500 | 0.0202 | - | - |
443
+ | 0.9930 | 41000 | 0.017 | - | - |
444
+ | 1.0 | 41291 | - | 0.0140 | 0.9991 |
445
+
446
+
447
+ ### Framework Versions
448
+ - Python: 3.10.13
449
+ - Sentence Transformers: 3.0.0
450
+ - Transformers: 4.39.3
451
+ - PyTorch: 2.1.2
452
+ - Accelerate: 0.28.0
453
+ - Datasets: 2.18.0
454
+ - Tokenizers: 0.15.2
455
+
456
+ ## Citation
457
+
458
+ ### BibTeX
459
+
460
+ #### Sentence Transformers
461
+ ```bibtex
462
+ @inproceedings{reimers-2019-sentence-bert,
463
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
464
+ author = "Reimers, Nils and Gurevych, Iryna",
465
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
466
+ month = "11",
467
+ year = "2019",
468
+ publisher = "Association for Computational Linguistics",
469
+ url = "https://arxiv.org/abs/1908.10084",
470
+ }
471
+ ```
472
+
473
+ #### TripletLoss
474
+ ```bibtex
475
+ @misc{hermans2017defense,
476
+ title={In Defense of the Triplet Loss for Person Re-Identification},
477
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
478
+ year={2017},
479
+ eprint={1703.07737},
480
+ archivePrefix={arXiv},
481
+ primaryClass={cs.CV}
482
+ }
483
+ ```
484
+
485
+ <!--
486
+ ## Glossary
487
+
488
+ *Clearly define terms in order to be accessible across audiences.*
489
+ -->
490
+
491
+ <!--
492
+ ## Model Card Authors
493
+
494
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
495
+ -->
496
+
497
+ <!--
498
+ ## Model Card Contact
499
+
500
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
501
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-base",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.39.3",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb1f620ceabb3b9cf7aa761b0d2090b034e28bf8030cbd05f86fd373cb6596f8
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1cc44ad7faaeec47241864835473fd5403f2da94673f3f764a77ebcb0a803ec
3
+ size 17083009
tokenizer_config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "tokenizer_class": "XLMRobertaTokenizer",
53
+ "unk_token": "<unk>"
54
+ }