slimaneMakh
commited on
Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +501 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,501 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: []
|
3 |
+
library_name: sentence-transformers
|
4 |
+
tags:
|
5 |
+
- sentence-transformers
|
6 |
+
- sentence-similarity
|
7 |
+
- feature-extraction
|
8 |
+
- dataset_size:100K<n<1M
|
9 |
+
- loss:TripletLoss
|
10 |
+
base_model: FacebookAI/xlm-roberta-base
|
11 |
+
metrics:
|
12 |
+
- cosine_accuracy
|
13 |
+
- dot_accuracy
|
14 |
+
- manhattan_accuracy
|
15 |
+
- euclidean_accuracy
|
16 |
+
- max_accuracy
|
17 |
+
widget:
|
18 |
+
- source_sentence: Skip
|
19 |
+
sentences:
|
20 |
+
- Ships
|
21 |
+
- Kapital akcyjny
|
22 |
+
- Other finance income
|
23 |
+
- source_sentence: IIII
|
24 |
+
sentences:
|
25 |
+
- iii
|
26 |
+
- Gauti dividendai
|
27 |
+
- Loans given
|
28 |
+
- source_sentence: IVE
|
29 |
+
sentences:
|
30 |
+
- HH
|
31 |
+
- Koszty finansowe
|
32 |
+
- Current borrowings
|
33 |
+
- source_sentence: K K
|
34 |
+
sentences:
|
35 |
+
- TOTAL ACTIF
|
36 |
+
- Nuomos mokejimai
|
37 |
+
- Accruals
|
38 |
+
- source_sentence: Sales
|
39 |
+
sentences:
|
40 |
+
- Revenue
|
41 |
+
- Operating profit
|
42 |
+
- Current borrowings
|
43 |
+
pipeline_tag: sentence-similarity
|
44 |
+
model-index:
|
45 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-base
|
46 |
+
results:
|
47 |
+
- task:
|
48 |
+
type: triplet
|
49 |
+
name: Triplet
|
50 |
+
dataset:
|
51 |
+
name: Unknown
|
52 |
+
type: unknown
|
53 |
+
metrics:
|
54 |
+
- type: cosine_accuracy
|
55 |
+
value: 0.9987885552019722
|
56 |
+
name: Cosine Accuracy
|
57 |
+
- type: dot_accuracy
|
58 |
+
value: 0.001529316610921369
|
59 |
+
name: Dot Accuracy
|
60 |
+
- type: manhattan_accuracy
|
61 |
+
value: 0.9975135360413657
|
62 |
+
name: Manhattan Accuracy
|
63 |
+
- type: euclidean_accuracy
|
64 |
+
value: 0.9990958312877694
|
65 |
+
name: Euclidean Accuracy
|
66 |
+
- type: max_accuracy
|
67 |
+
value: 0.9990958312877694
|
68 |
+
name: Max Accuracy
|
69 |
+
---
|
70 |
+
|
71 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-base
|
72 |
+
|
73 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
74 |
+
|
75 |
+
## Model Details
|
76 |
+
|
77 |
+
### Model Description
|
78 |
+
- **Model Type:** Sentence Transformer
|
79 |
+
- **Base model:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) <!-- at revision e73636d4f797dec63c3081bb6ed5c7b0bb3f2089 -->
|
80 |
+
- **Maximum Sequence Length:** 512 tokens
|
81 |
+
- **Output Dimensionality:** 768 tokens
|
82 |
+
- **Similarity Function:** Cosine Similarity
|
83 |
+
<!-- - **Training Dataset:** Unknown -->
|
84 |
+
<!-- - **Language:** Unknown -->
|
85 |
+
<!-- - **License:** Unknown -->
|
86 |
+
|
87 |
+
### Model Sources
|
88 |
+
|
89 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
90 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
91 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
92 |
+
|
93 |
+
### Full Model Architecture
|
94 |
+
|
95 |
+
```
|
96 |
+
SentenceTransformer(
|
97 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
98 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
99 |
+
)
|
100 |
+
```
|
101 |
+
|
102 |
+
## Usage
|
103 |
+
|
104 |
+
### Direct Usage (Sentence Transformers)
|
105 |
+
|
106 |
+
First install the Sentence Transformers library:
|
107 |
+
|
108 |
+
```bash
|
109 |
+
pip install -U sentence-transformers
|
110 |
+
```
|
111 |
+
|
112 |
+
Then you can load this model and run inference.
|
113 |
+
```python
|
114 |
+
from sentence_transformers import SentenceTransformer
|
115 |
+
|
116 |
+
# Download from the 🤗 Hub
|
117 |
+
model = SentenceTransformer("slimaneMakh/triplet_CloseHlabel_farLabel_andnegativ-1M-5eps-XLMR_29may")
|
118 |
+
# Run inference
|
119 |
+
sentences = [
|
120 |
+
'Sales',
|
121 |
+
'Revenue',
|
122 |
+
'Operating profit',
|
123 |
+
]
|
124 |
+
embeddings = model.encode(sentences)
|
125 |
+
print(embeddings.shape)
|
126 |
+
# [3, 768]
|
127 |
+
|
128 |
+
# Get the similarity scores for the embeddings
|
129 |
+
similarities = model.similarity(embeddings, embeddings)
|
130 |
+
print(similarities.shape)
|
131 |
+
# [3, 3]
|
132 |
+
```
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Direct Usage (Transformers)
|
136 |
+
|
137 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
138 |
+
|
139 |
+
</details>
|
140 |
+
-->
|
141 |
+
|
142 |
+
<!--
|
143 |
+
### Downstream Usage (Sentence Transformers)
|
144 |
+
|
145 |
+
You can finetune this model on your own dataset.
|
146 |
+
|
147 |
+
<details><summary>Click to expand</summary>
|
148 |
+
|
149 |
+
</details>
|
150 |
+
-->
|
151 |
+
|
152 |
+
<!--
|
153 |
+
### Out-of-Scope Use
|
154 |
+
|
155 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
156 |
+
-->
|
157 |
+
|
158 |
+
## Evaluation
|
159 |
+
|
160 |
+
### Metrics
|
161 |
+
|
162 |
+
#### Triplet
|
163 |
+
|
164 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
165 |
+
|
166 |
+
| Metric | Value |
|
167 |
+
|:-------------------|:-----------|
|
168 |
+
| cosine_accuracy | 0.9988 |
|
169 |
+
| dot_accuracy | 0.0015 |
|
170 |
+
| manhattan_accuracy | 0.9975 |
|
171 |
+
| euclidean_accuracy | 0.9991 |
|
172 |
+
| **max_accuracy** | **0.9991** |
|
173 |
+
|
174 |
+
<!--
|
175 |
+
## Bias, Risks and Limitations
|
176 |
+
|
177 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
178 |
+
-->
|
179 |
+
|
180 |
+
<!--
|
181 |
+
### Recommendations
|
182 |
+
|
183 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
184 |
+
-->
|
185 |
+
|
186 |
+
## Training Details
|
187 |
+
|
188 |
+
### Training Dataset
|
189 |
+
|
190 |
+
#### Unnamed Dataset
|
191 |
+
|
192 |
+
|
193 |
+
* Size: 660,643 training samples
|
194 |
+
* Columns: <code>anchor_label</code>, <code>pos_hlabel</code>, and <code>neg_hlabel</code>
|
195 |
+
* Approximate statistics based on the first 1000 samples:
|
196 |
+
| | anchor_label | pos_hlabel | neg_hlabel |
|
197 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
198 |
+
| type | string | string | string |
|
199 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.86 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.06 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 7.99 tokens</li><li>max: 25 tokens</li></ul> |
|
200 |
+
* Samples:
|
201 |
+
| anchor_label | pos_hlabel | neg_hlabel |
|
202 |
+
|:---------------------------------------------|:-------------------------------------------|:------------------------------------------------------------------------------|
|
203 |
+
| <code>Basic earnings (loss) per share</code> | <code>Tavakasum kahjum aktsia kohta</code> | <code>II Kapital z nadwyzki wartosci emisyjnej ponad wartosc nominalna</code> |
|
204 |
+
| <code>Comprehensive income</code> | <code>Suma dochodow calkowitych</code> | <code>dont Marques</code> |
|
205 |
+
| <code>Cash and cash equivalents</code> | <code>Cash and cash equivalents</code> | <code>Cars incl prepayments</code> |
|
206 |
+
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
|
207 |
+
```json
|
208 |
+
{
|
209 |
+
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
|
210 |
+
"triplet_margin": 5
|
211 |
+
}
|
212 |
+
```
|
213 |
+
|
214 |
+
### Evaluation Dataset
|
215 |
+
|
216 |
+
#### Unnamed Dataset
|
217 |
+
|
218 |
+
|
219 |
+
* Size: 283,133 evaluation samples
|
220 |
+
* Columns: <code>anchor_label</code>, <code>pos_hlabel</code>, and <code>neg_hlabel</code>
|
221 |
+
* Approximate statistics based on the first 1000 samples:
|
222 |
+
| | anchor_label | pos_hlabel | neg_hlabel |
|
223 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
224 |
+
| type | string | string | string |
|
225 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 11.78 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.22 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.12 tokens</li><li>max: 29 tokens</li></ul> |
|
226 |
+
* Samples:
|
227 |
+
| anchor_label | pos_hlabel | neg_hlabel |
|
228 |
+
|:--------------------------------------------------------------------------------|:-------------------------------------------------------|:-------------------------------------|
|
229 |
+
| <code>Deferred tax assets</code> | <code>Deferred tax assets</code> | <code>Immateriella tillgangar</code> |
|
230 |
+
| <code>Equity</code> | <code>EGET KAPITAL inklusive periodens resultat</code> | <code>Materials</code> |
|
231 |
+
| <code>Adjustments for decrease (increase) in other operating receivables</code> | <code>Okning av ovriga rorelsetillgangar</code> | <code>Rorelseresultat</code> |
|
232 |
+
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
|
233 |
+
```json
|
234 |
+
{
|
235 |
+
"distance_metric": "TripletDistanceMetric.EUCLIDEAN",
|
236 |
+
"triplet_margin": 5
|
237 |
+
}
|
238 |
+
```
|
239 |
+
|
240 |
+
### Training Hyperparameters
|
241 |
+
#### Non-Default Hyperparameters
|
242 |
+
|
243 |
+
- `per_device_train_batch_size`: 16
|
244 |
+
- `per_device_eval_batch_size`: 16
|
245 |
+
- `num_train_epochs`: 1
|
246 |
+
- `warmup_ratio`: 0.1
|
247 |
+
- `batch_sampler`: no_duplicates
|
248 |
+
|
249 |
+
#### All Hyperparameters
|
250 |
+
<details><summary>Click to expand</summary>
|
251 |
+
|
252 |
+
- `overwrite_output_dir`: False
|
253 |
+
- `do_predict`: False
|
254 |
+
- `prediction_loss_only`: True
|
255 |
+
- `per_device_train_batch_size`: 16
|
256 |
+
- `per_device_eval_batch_size`: 16
|
257 |
+
- `per_gpu_train_batch_size`: None
|
258 |
+
- `per_gpu_eval_batch_size`: None
|
259 |
+
- `gradient_accumulation_steps`: 1
|
260 |
+
- `eval_accumulation_steps`: None
|
261 |
+
- `learning_rate`: 5e-05
|
262 |
+
- `weight_decay`: 0.0
|
263 |
+
- `adam_beta1`: 0.9
|
264 |
+
- `adam_beta2`: 0.999
|
265 |
+
- `adam_epsilon`: 1e-08
|
266 |
+
- `max_grad_norm`: 1.0
|
267 |
+
- `num_train_epochs`: 1
|
268 |
+
- `max_steps`: -1
|
269 |
+
- `lr_scheduler_type`: linear
|
270 |
+
- `lr_scheduler_kwargs`: {}
|
271 |
+
- `warmup_ratio`: 0.1
|
272 |
+
- `warmup_steps`: 0
|
273 |
+
- `log_level`: passive
|
274 |
+
- `log_level_replica`: warning
|
275 |
+
- `log_on_each_node`: True
|
276 |
+
- `logging_nan_inf_filter`: True
|
277 |
+
- `save_safetensors`: True
|
278 |
+
- `save_on_each_node`: False
|
279 |
+
- `save_only_model`: False
|
280 |
+
- `no_cuda`: False
|
281 |
+
- `use_cpu`: False
|
282 |
+
- `use_mps_device`: False
|
283 |
+
- `seed`: 42
|
284 |
+
- `data_seed`: None
|
285 |
+
- `jit_mode_eval`: False
|
286 |
+
- `use_ipex`: False
|
287 |
+
- `bf16`: False
|
288 |
+
- `fp16`: False
|
289 |
+
- `fp16_opt_level`: O1
|
290 |
+
- `half_precision_backend`: auto
|
291 |
+
- `bf16_full_eval`: False
|
292 |
+
- `fp16_full_eval`: False
|
293 |
+
- `tf32`: None
|
294 |
+
- `local_rank`: 0
|
295 |
+
- `ddp_backend`: None
|
296 |
+
- `tpu_num_cores`: None
|
297 |
+
- `tpu_metrics_debug`: False
|
298 |
+
- `debug`: []
|
299 |
+
- `dataloader_drop_last`: False
|
300 |
+
- `dataloader_num_workers`: 0
|
301 |
+
- `dataloader_prefetch_factor`: None
|
302 |
+
- `past_index`: -1
|
303 |
+
- `disable_tqdm`: False
|
304 |
+
- `remove_unused_columns`: True
|
305 |
+
- `label_names`: None
|
306 |
+
- `load_best_model_at_end`: False
|
307 |
+
- `ignore_data_skip`: False
|
308 |
+
- `fsdp`: []
|
309 |
+
- `fsdp_min_num_params`: 0
|
310 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
311 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
312 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
|
313 |
+
- `deepspeed`: None
|
314 |
+
- `label_smoothing_factor`: 0.0
|
315 |
+
- `optim`: adamw_torch
|
316 |
+
- `optim_args`: None
|
317 |
+
- `adafactor`: False
|
318 |
+
- `group_by_length`: False
|
319 |
+
- `length_column_name`: length
|
320 |
+
- `ddp_find_unused_parameters`: None
|
321 |
+
- `ddp_bucket_cap_mb`: None
|
322 |
+
- `ddp_broadcast_buffers`: False
|
323 |
+
- `dataloader_pin_memory`: True
|
324 |
+
- `dataloader_persistent_workers`: False
|
325 |
+
- `skip_memory_metrics`: True
|
326 |
+
- `use_legacy_prediction_loop`: False
|
327 |
+
- `push_to_hub`: False
|
328 |
+
- `resume_from_checkpoint`: None
|
329 |
+
- `hub_model_id`: None
|
330 |
+
- `hub_strategy`: every_save
|
331 |
+
- `hub_private_repo`: False
|
332 |
+
- `hub_always_push`: False
|
333 |
+
- `gradient_checkpointing`: False
|
334 |
+
- `gradient_checkpointing_kwargs`: None
|
335 |
+
- `include_inputs_for_metrics`: False
|
336 |
+
- `fp16_backend`: auto
|
337 |
+
- `push_to_hub_model_id`: None
|
338 |
+
- `push_to_hub_organization`: None
|
339 |
+
- `mp_parameters`:
|
340 |
+
- `auto_find_batch_size`: False
|
341 |
+
- `full_determinism`: False
|
342 |
+
- `torchdynamo`: None
|
343 |
+
- `ray_scope`: last
|
344 |
+
- `ddp_timeout`: 1800
|
345 |
+
- `torch_compile`: False
|
346 |
+
- `torch_compile_backend`: None
|
347 |
+
- `torch_compile_mode`: None
|
348 |
+
- `dispatch_batches`: None
|
349 |
+
- `split_batches`: None
|
350 |
+
- `include_tokens_per_second`: False
|
351 |
+
- `include_num_input_tokens_seen`: False
|
352 |
+
- `neftune_noise_alpha`: None
|
353 |
+
- `optim_target_modules`: None
|
354 |
+
- `batch_sampler`: no_duplicates
|
355 |
+
- `multi_dataset_batch_sampler`: proportional
|
356 |
+
|
357 |
+
</details>
|
358 |
+
|
359 |
+
### Training Logs
|
360 |
+
| Epoch | Step | Training Loss | loss | max_accuracy |
|
361 |
+
|:------:|:-----:|:-------------:|:------:|:------------:|
|
362 |
+
| 0.0121 | 500 | 3.7705 | - | - |
|
363 |
+
| 0.0242 | 1000 | 1.4084 | - | - |
|
364 |
+
| 0.0363 | 1500 | 0.7062 | - | - |
|
365 |
+
| 0.0484 | 2000 | 0.5236 | - | - |
|
366 |
+
| 0.0605 | 2500 | 0.4348 | - | - |
|
367 |
+
| 0.0727 | 3000 | 0.3657 | - | - |
|
368 |
+
| 0.0848 | 3500 | 0.3657 | - | - |
|
369 |
+
| 0.0969 | 4000 | 0.2952 | - | - |
|
370 |
+
| 0.1090 | 4500 | 0.3805 | - | - |
|
371 |
+
| 0.1211 | 5000 | 0.3255 | - | - |
|
372 |
+
| 0.1332 | 5500 | 0.2621 | - | - |
|
373 |
+
| 0.1453 | 6000 | 0.2377 | - | - |
|
374 |
+
| 0.1574 | 6500 | 0.2139 | - | - |
|
375 |
+
| 0.1695 | 7000 | 0.2085 | - | - |
|
376 |
+
| 0.1816 | 7500 | 0.1809 | - | - |
|
377 |
+
| 0.1937 | 8000 | 0.1711 | - | - |
|
378 |
+
| 0.2059 | 8500 | 0.1608 | - | - |
|
379 |
+
| 0.2180 | 9000 | 0.1808 | - | - |
|
380 |
+
| 0.2301 | 9500 | 0.1553 | - | - |
|
381 |
+
| 0.2422 | 10000 | 0.1417 | - | - |
|
382 |
+
| 0.2543 | 10500 | 0.1329 | - | - |
|
383 |
+
| 0.2664 | 11000 | 0.1689 | - | - |
|
384 |
+
| 0.2785 | 11500 | 0.1292 | - | - |
|
385 |
+
| 0.2906 | 12000 | 0.1181 | - | - |
|
386 |
+
| 0.3027 | 12500 | 0.1223 | - | - |
|
387 |
+
| 0.3148 | 13000 | 0.129 | - | - |
|
388 |
+
| 0.3269 | 13500 | 0.0911 | - | - |
|
389 |
+
| 0.3391 | 14000 | 0.113 | - | - |
|
390 |
+
| 0.3512 | 14500 | 0.0955 | - | - |
|
391 |
+
| 0.3633 | 15000 | 0.108 | - | - |
|
392 |
+
| 0.3754 | 15500 | 0.094 | - | - |
|
393 |
+
| 0.3875 | 16000 | 0.0947 | - | - |
|
394 |
+
| 0.3996 | 16500 | 0.0748 | - | - |
|
395 |
+
| 0.4117 | 17000 | 0.0699 | - | - |
|
396 |
+
| 0.4238 | 17500 | 0.0707 | - | - |
|
397 |
+
| 0.4359 | 18000 | 0.0768 | - | - |
|
398 |
+
| 0.4480 | 18500 | 0.0805 | - | - |
|
399 |
+
| 0.4601 | 19000 | 0.0705 | - | - |
|
400 |
+
| 0.4723 | 19500 | 0.069 | - | - |
|
401 |
+
| 0.4844 | 20000 | 0.072 | - | - |
|
402 |
+
| 0.4965 | 20500 | 0.0669 | - | - |
|
403 |
+
| 0.5086 | 21000 | 0.066 | - | - |
|
404 |
+
| 0.5207 | 21500 | 0.0624 | - | - |
|
405 |
+
| 0.5328 | 22000 | 0.0687 | - | - |
|
406 |
+
| 0.5449 | 22500 | 0.076 | - | - |
|
407 |
+
| 0.5570 | 23000 | 0.0563 | - | - |
|
408 |
+
| 0.5691 | 23500 | 0.0594 | - | - |
|
409 |
+
| 0.5812 | 24000 | 0.0524 | - | - |
|
410 |
+
| 0.5933 | 24500 | 0.0528 | - | - |
|
411 |
+
| 0.6055 | 25000 | 0.0448 | - | - |
|
412 |
+
| 0.6176 | 25500 | 0.041 | - | - |
|
413 |
+
| 0.6297 | 26000 | 0.0397 | - | - |
|
414 |
+
| 0.6418 | 26500 | 0.0489 | - | - |
|
415 |
+
| 0.6539 | 27000 | 0.0595 | - | - |
|
416 |
+
| 0.6660 | 27500 | 0.034 | - | - |
|
417 |
+
| 0.6781 | 28000 | 0.0569 | - | - |
|
418 |
+
| 0.6902 | 28500 | 0.0467 | - | - |
|
419 |
+
| 0.7023 | 29000 | 0.0323 | - | - |
|
420 |
+
| 0.7144 | 29500 | 0.0428 | - | - |
|
421 |
+
| 0.7266 | 30000 | 0.0344 | - | - |
|
422 |
+
| 0.7387 | 30500 | 0.029 | - | - |
|
423 |
+
| 0.7508 | 31000 | 0.0418 | - | - |
|
424 |
+
| 0.7629 | 31500 | 0.0285 | - | - |
|
425 |
+
| 0.7750 | 32000 | 0.0425 | - | - |
|
426 |
+
| 0.7871 | 32500 | 0.0266 | - | - |
|
427 |
+
| 0.7992 | 33000 | 0.0325 | - | - |
|
428 |
+
| 0.8113 | 33500 | 0.0215 | - | - |
|
429 |
+
| 0.8234 | 34000 | 0.0316 | - | - |
|
430 |
+
| 0.8355 | 34500 | 0.0286 | - | - |
|
431 |
+
| 0.8476 | 35000 | 0.0285 | - | - |
|
432 |
+
| 0.8598 | 35500 | 0.0284 | - | - |
|
433 |
+
| 0.8719 | 36000 | 0.0147 | - | - |
|
434 |
+
| 0.8840 | 36500 | 0.0217 | - | - |
|
435 |
+
| 0.8961 | 37000 | 0.0311 | - | - |
|
436 |
+
| 0.9082 | 37500 | 0.0202 | - | - |
|
437 |
+
| 0.9203 | 38000 | 0.0236 | - | - |
|
438 |
+
| 0.9324 | 38500 | 0.0201 | - | - |
|
439 |
+
| 0.9445 | 39000 | 0.0246 | - | - |
|
440 |
+
| 0.9566 | 39500 | 0.0177 | - | - |
|
441 |
+
| 0.9687 | 40000 | 0.0173 | - | - |
|
442 |
+
| 0.9808 | 40500 | 0.0202 | - | - |
|
443 |
+
| 0.9930 | 41000 | 0.017 | - | - |
|
444 |
+
| 1.0 | 41291 | - | 0.0140 | 0.9991 |
|
445 |
+
|
446 |
+
|
447 |
+
### Framework Versions
|
448 |
+
- Python: 3.10.13
|
449 |
+
- Sentence Transformers: 3.0.0
|
450 |
+
- Transformers: 4.39.3
|
451 |
+
- PyTorch: 2.1.2
|
452 |
+
- Accelerate: 0.28.0
|
453 |
+
- Datasets: 2.18.0
|
454 |
+
- Tokenizers: 0.15.2
|
455 |
+
|
456 |
+
## Citation
|
457 |
+
|
458 |
+
### BibTeX
|
459 |
+
|
460 |
+
#### Sentence Transformers
|
461 |
+
```bibtex
|
462 |
+
@inproceedings{reimers-2019-sentence-bert,
|
463 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
464 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
465 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
466 |
+
month = "11",
|
467 |
+
year = "2019",
|
468 |
+
publisher = "Association for Computational Linguistics",
|
469 |
+
url = "https://arxiv.org/abs/1908.10084",
|
470 |
+
}
|
471 |
+
```
|
472 |
+
|
473 |
+
#### TripletLoss
|
474 |
+
```bibtex
|
475 |
+
@misc{hermans2017defense,
|
476 |
+
title={In Defense of the Triplet Loss for Person Re-Identification},
|
477 |
+
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
|
478 |
+
year={2017},
|
479 |
+
eprint={1703.07737},
|
480 |
+
archivePrefix={arXiv},
|
481 |
+
primaryClass={cs.CV}
|
482 |
+
}
|
483 |
+
```
|
484 |
+
|
485 |
+
<!--
|
486 |
+
## Glossary
|
487 |
+
|
488 |
+
*Clearly define terms in order to be accessible across audiences.*
|
489 |
+
-->
|
490 |
+
|
491 |
+
<!--
|
492 |
+
## Model Card Authors
|
493 |
+
|
494 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
495 |
+
-->
|
496 |
+
|
497 |
+
<!--
|
498 |
+
## Model Card Contact
|
499 |
+
|
500 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
501 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "xlm-roberta-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.39.3",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0",
|
4 |
+
"transformers": "4.39.3",
|
5 |
+
"pytorch": "2.1.2"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb1f620ceabb3b9cf7aa761b0d2090b034e28bf8030cbd05f86fd373cb6596f8
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1cc44ad7faaeec47241864835473fd5403f2da94673f3f764a77ebcb0a803ec
|
3 |
+
size 17083009
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|